精英家教网 > 高中数学 > 题目详情
7.如图,平面中两条直线l1和l2相交于点O,对于平面上任意一点M,若p,q分别是M到直线l1和l2的距离,则称有序非负实数对(p,q)是点M的“距离坐标”.
给出下列四个命题:
①若p=q=0,则“距离坐标”为(0,0)的点有且仅有1个.
②若pq=0,且p+q≠0,则“距离坐标”为(p,q)的点有且仅有2个.
③若pq≠0,则“距离坐标”为(p,q)的点有且仅有4个.
④若p=q,则点M的轨迹是一条过O点的直线.
其中所有正确命题的序号为①②③.

分析 根据点M的“距离坐标”的定义即可判断出正误.

解答 解:①若p=q=0,则“距离坐标”为(0,0)的点是两条直线的交点O,因此有且仅有1个,正确.
②若pq=0,且p+q≠0,则“距离坐标”为(0,q)(q≠0)或(p,0)(p≠0),因此满足条件的点有且仅有2个,
正确.
③若pq≠0,则“距离坐标”为(p,q)的点有且仅有4个,如图所示,正确.
④若p=q,则点M的轨迹是两条过O点的直线,分别为交角的平分线所在直线,因此不正确.
综上可得:只有①②③正确.
故答案为:①②③.

点评 本题考查了新定义“距离坐标”,考查了理解能力与推理能力、数形结合的思想方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\left\{\begin{array}{l}{{3}^{x}(x≥0)}\\{lo{g}_{3}(-x)(x<0)}\end{array}\right.$,函数g(x)=[f(x)]2+f(x)+t,t∈R,则下列判断不正确的是(  )
A.若t=$\frac{1}{4}$,则g(x)有一个零点B.若-2<t<$\frac{1}{4}$,则g(x)有两个零点
C.若t<-2,则g(x)有四个零点D.若t=-2,则g(x)有三个零点

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若不等式|bx-1|≤2a(a>0,b≠0)的解集为x∈[1,2],则a+b=$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设全集U=R,集合P={x|x2-x-6≥0},Q={x|2x≥1},则(CRP)∩Q=(  )
A.{x|-2<x<3}B.{x|x≥0}C.{x|0≤x<3}D.{x|0≤x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义在R上的函数f(x)满足f(x+6)=f(x).当x∈[-3,-1)时,f(x)=-(x+2)2,当x∈[-1,3)时,f(x)=x,则f(1)+f(2)+f(3)+…+f(2015)=(  )
A.336B.355C.1676D.2015

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知抛物线y2=2x上一点P(m,2),则m=2,点P到抛物线的焦点F的距离为$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知i是虚数单位,$\overline{z}$是z=1+i的共轭复数,则$\frac{\overline{z}}{{z}^{2}}$在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设a,b∈R,关于x,y的不等式|x|+|y|<1和ax+4by≥8无公共解,则ab的取值范围是(  )
A.[-16,16]B.[-8,8]C.[-4,4]D.[-2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在极坐标系中,已知点$A(4,1),B(3,1+\frac{π}{2})$,则线段AB的长度是(  )
A.1B.$\sqrt{1+\frac{π^2}{4}}$C.7D.5

查看答案和解析>>

同步练习册答案