精英家教网 > 高中数学 > 题目详情
15.设全集U=R,集合P={x|x2-x-6≥0},Q={x|2x≥1},则(CRP)∩Q=(  )
A.{x|-2<x<3}B.{x|x≥0}C.{x|0≤x<3}D.{x|0≤x<2}

分析 求出P与Q中不等式的解集确定出P与Q,求出P的补集,找出(CRP)∩Q即可.

解答 解:∵集合P={x|x2-x-6≥0}={x|(x-3)(x+2)≥0}=(-∞,-2]∪[3,+∞),
∴(CRP)=(-2,3),
∵Q={x|2x≥1}={x|2x≥20}={x|x≥0}=[0,+∞),
∴(CRP)∩Q=[0,3),
故选:C

点评 本题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知极坐标的极点与直角坐标系原点重合,极轴与x正半轴重合,曲线C的参数方程$\left\{\begin{array}{l}{x=2cosα}\\{y=sinα}\end{array}\right.$(α为参数),曲线E的方程为$\left\{\begin{array}{l}{x=3-t}\\{y=2t-5}\end{array}\right.$.
(1)求曲线C与曲线E的普通方程;
(2)曲线C上的点到曲线E的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)是定义在R上的奇函数,当x∈[-1,0)时,f(x)=x+3,则f($\frac{1}{2}$)=(  )
A.-$\frac{3}{2}$B.-$\frac{7}{2}$C.-$\frac{5}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.从6本不同的书中选出4本,分别发给4个同学,已知其中两本书不能发给甲同学,则不同分配方法有(  )
A.180B.220C.240D.260

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知圆锥曲线nx2+y2=1的离心率为2,则实数n的值为(  )
A.3B.-3C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设a=log4π,$b={log_{\frac{1}{4}}}$π,c=π4,则a,b,c的大小关系是(  )
A.a>c>bB.b>c>aC.c>b>aD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,平面中两条直线l1和l2相交于点O,对于平面上任意一点M,若p,q分别是M到直线l1和l2的距离,则称有序非负实数对(p,q)是点M的“距离坐标”.
给出下列四个命题:
①若p=q=0,则“距离坐标”为(0,0)的点有且仅有1个.
②若pq=0,且p+q≠0,则“距离坐标”为(p,q)的点有且仅有2个.
③若pq≠0,则“距离坐标”为(p,q)的点有且仅有4个.
④若p=q,则点M的轨迹是一条过O点的直线.
其中所有正确命题的序号为①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=|x-1|+|x+3|,x∈R.
(1)解不等式f(x)≤5;
(2)若不等式t2+3t>f(x)在x∈R上有解,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.现有三个函数:①y=$\frac{{e}^{x}+{e}^{-x}}{2}$,②y=$\frac{{e}^{x}-{e}^{-x}}{2}$,③y=$\frac{{e}^{x}-{e}^{-x}}{{e}^{x}+{e}^{-x}}$的图象(部分)如下:

则按照从左到右图象对应的函数序号安排正确的一组是(  )
A.①②③B.③①②C.③②①D.②①③

查看答案和解析>>

同步练习册答案