精英家教网 > 高中数学 > 题目详情
10.已知圆锥曲线nx2+y2=1的离心率为2,则实数n的值为(  )
A.3B.-3C.$\frac{1}{3}$D.-$\frac{1}{3}$

分析 由双曲线nx2+y2=1,化为标准方程,利用离心率e=2,即可求出n的值,

解答 解:圆锥曲线nx2+y2=1为双曲线,即:${y}^{2}-\frac{{x}^{2}}{-\frac{1}{n}}$=1,
∵圆锥曲线nx2+y2=1的离心率为2,
∴e2=1+$\frac{-1}{n}$=4,∴n=-$\frac{1}{3}$.
故选:D.

点评 本题考查双曲线的性质和标准方程,将方程化为标准方程是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知f(x)是定义在R上的奇函数,且当x>0时,f(x)=$\left\{\begin{array}{l}{cos\frac{πx}{6},0<x≤8}\\{lo{g}_{2}x,x>8}\end{array}\right.$,则f(f(-16))=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=3x2-2tx-1,x∈[-1,1],t∈R.
(Ⅰ)若t∈[0,3],求f(x)的值域;
(Ⅱ)求证:|f(x)|≤max{f(-1),f(1)}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若不等式|bx-1|≤2a(a>0,b≠0)的解集为x∈[1,2],则a+b=$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,角A、B、C对应的边分别是a、b、c,已知3cosBcosC+2=3sinBsinC+2cos2A.
(Ⅰ)求角A的大小;
(Ⅱ)若b=5,sinBsinC=$\frac{5}{7}$,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设全集U=R,集合P={x|x2-x-6≥0},Q={x|2x≥1},则(CRP)∩Q=(  )
A.{x|-2<x<3}B.{x|x≥0}C.{x|0≤x<3}D.{x|0≤x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义在R上的函数f(x)满足f(x+6)=f(x).当x∈[-3,-1)时,f(x)=-(x+2)2,当x∈[-1,3)时,f(x)=x,则f(1)+f(2)+f(3)+…+f(2015)=(  )
A.336B.355C.1676D.2015

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知i是虚数单位,$\overline{z}$是z=1+i的共轭复数,则$\frac{\overline{z}}{{z}^{2}}$在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.抛物线y2+4x=0上的点P到直线x=2的距离等于4,则P到焦点F的距离|PF|=(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案