精英家教网 > 高中数学 > 题目详情
16.设a,b∈R,关于x,y的不等式|x|+|y|<1和ax+4by≥8无公共解,则ab的取值范围是(  )
A.[-16,16]B.[-8,8]C.[-4,4]D.[-2,2]

分析 画出不等式表示的可行域,通过对a,b的符号讨论,然后求解ab的取值范围.

解答 解:关于x,y的不等式|x|+|y|<1表示的可行域如图的阴影部分:可行域与坐标轴的交点坐标(1,0),(0,1),(0,-1),(-1,0),

关于x,y的不等式|x|+|y|<1和ax+4by≥8无公共解,则ax+4by≥8表示的范围在可行域外侧,
当a>0,b>0时满足题意,可得$\frac{2}{b}≥1$,$\frac{8}{a}≥1$,可得0<ab≤16,
当a>0,b<0时满足题意,可得$\frac{2}{b}≤-1$,$\frac{8}{a}≥1$,可得:-2≤b<0,0<a≤8可得-16≤ab<0,
当a<0,b>0时满足题意,可得$\frac{2}{b}≥1$,$\frac{8}{a}≤-1$,可得:0<b≤2,-8≤a<0可得-16≤ab<0,
当a<0,b<0时满足题意,可得$\frac{2}{b}≤-1$,$\frac{8}{a}≤-1$,可得:-2≤b<0,-8≤a<0,∴0<ab≤16,
当ab=0时,不等式|x|+|y|<1和ax+4by≥8无公共解.
故选:A.

点评 本题考查线性规划的应用,考查分类讨论的应用,本题是选择题,可以利用特殊值方法判断求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)是定义在R上的奇函数,当x∈[-1,0)时,f(x)=x+3,则f($\frac{1}{2}$)=(  )
A.-$\frac{3}{2}$B.-$\frac{7}{2}$C.-$\frac{5}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,平面中两条直线l1和l2相交于点O,对于平面上任意一点M,若p,q分别是M到直线l1和l2的距离,则称有序非负实数对(p,q)是点M的“距离坐标”.
给出下列四个命题:
①若p=q=0,则“距离坐标”为(0,0)的点有且仅有1个.
②若pq=0,且p+q≠0,则“距离坐标”为(p,q)的点有且仅有2个.
③若pq≠0,则“距离坐标”为(p,q)的点有且仅有4个.
④若p=q,则点M的轨迹是一条过O点的直线.
其中所有正确命题的序号为①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=|x-1|+|x+3|,x∈R.
(1)解不等式f(x)≤5;
(2)若不等式t2+3t>f(x)在x∈R上有解,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设1+x5=a0+a1(x-1)+a2(x-1)2+…+a5(x-1)5,则a1+a2+…+a5=31.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.点P是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1,(a>0,b>0)$上一点,F是右焦点,且△OPF为等腰直角三角形(O为坐标原点),则双曲线离心率的值是$\frac{{\sqrt{5}+1}}{2}$或$\frac{{\sqrt{10}+\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若曲线y=f(x)在点A(x1,y1)处切线的斜率为kA,曲线y=g(x)在点B(x2,y2)处切线的斜率为kB(x1≠x2),将$\frac{|{k}_{A}-{k}_{B}|}{|AB|}$的值称为这两曲线在A,B间的“异线曲度”,记作φ(A,B).现给出以下四个命题:
①已知曲线f(x)=x3,g(x)=x2-1,且A(1,1),B(2,3),则φ(A,B)>$\frac{\sqrt{2}}{2}$;
②存在两个函数y=f(x),y=g(x),其图象上任意两点间的“异线曲度”为常数;
③已知抛物线f(x)=x2+1,g(x)=x2,若x1>x2>0,则φ(A,B)<$\frac{2\sqrt{5}}{5}$;
④对于曲线f(x)=ex,g(x)=e-x,当x1-x2=1时,若存在实数t,使得t•φ(A,B)>1恒成立,则t的取值范围是[1,+∞).
其中正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.现有三个函数:①y=$\frac{{e}^{x}+{e}^{-x}}{2}$,②y=$\frac{{e}^{x}-{e}^{-x}}{2}$,③y=$\frac{{e}^{x}-{e}^{-x}}{{e}^{x}+{e}^{-x}}$的图象(部分)如下:

则按照从左到右图象对应的函数序号安排正确的一组是(  )
A.①②③B.③①②C.③②①D.②①③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lnx-ax-ln2.
(1)讨论y=f(x)的单调性;
(2)当a=1,时,对任意x∈(0,+∞),不等式f(x)≤bx-1恒成立,求实数b的取值范围.

查看答案和解析>>

同步练习册答案