8£®ÈôÇúÏßy=f£¨x£©ÔÚµãA£¨x1£¬y1£©´¦ÇÐÏßµÄбÂÊΪkA£¬ÇúÏßy=g£¨x£©ÔÚµãB£¨x2£¬y2£©´¦ÇÐÏßµÄбÂÊΪkB£¨x1¡Ùx2£©£¬½«$\frac{|{k}_{A}-{k}_{B}|}{|AB|}$µÄÖµ³ÆÎªÕâÁ½ÇúÏßÔÚA£¬B¼äµÄ¡°ÒìÏßÇú¶È¡±£¬¼Ç×÷¦Õ£¨A£¬B£©£®ÏÖ¸ø³öÒÔÏÂËĸöÃüÌ⣺
¢ÙÒÑÖªÇúÏßf£¨x£©=x3£¬g£¨x£©=x2-1£¬ÇÒA£¨1£¬1£©£¬B£¨2£¬3£©£¬Ôò¦Õ£¨A£¬B£©£¾$\frac{\sqrt{2}}{2}$£»
¢Ú´æÔÚÁ½¸öº¯Êýy=f£¨x£©£¬y=g£¨x£©£¬ÆäͼÏóÉÏÈÎÒâÁ½µã¼äµÄ¡°ÒìÏßÇú¶È¡±Îª³£Êý£»
¢ÛÒÑÖªÅ×ÎïÏßf£¨x£©=x2+1£¬g£¨x£©=x2£¬Èôx1£¾x2£¾0£¬Ôò¦Õ£¨A£¬B£©£¼$\frac{2\sqrt{5}}{5}$£»
¢Ü¶ÔÓÚÇúÏßf£¨x£©=ex£¬g£¨x£©=e-x£¬µ±x1-x2=1ʱ£¬Èô´æÔÚʵÊýt£¬Ê¹µÃt•¦Õ£¨A£¬B£©£¾1ºã³ÉÁ¢£¬ÔòtµÄȡֵ·¶Î§ÊÇ[1£¬+¡Þ£©£®
ÆäÖÐÕýÈ·ÃüÌâµÄ¸öÊýÊÇ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

·ÖÎö ¢Ù¸ù¾Ýж¨Ò壬ÅжϦգ¨A£¬B£©£¼$\frac{\sqrt{2}}{2}$£¬µÃ³ö¢Ù´íÎó£»
¢Ú¾ÙÀý˵Ã÷´æÔÚ¦Õ£¨A£¬B£©=0Êdz£Êý£¬µÃ³ö¢ÚÕýÈ·£»
¢ÛÑéÖ¤¦Õ£¨A£¬B£©£¼$\frac{2\sqrt{5}}{5}$£¬ÅжϢÛÕýÈ·£»
¢ÜÅжϦգ¨A£¬B£©¶Ôt•¦Õ£¨A£¬B£©£¾1ºã³ÉÁ¢Ê±£¬tµÄȡֵ·¶Î§ÊÇʲô£¬µÃ³ö¢ÜÕýÈ·£®

½â´ð ½â£º¶ÔÓÚ¢Ù£¬¡ßf£¨x£©=x3g£¨x£©=x2-1£¬¡àf¡ä£¨x£©=3x2£¬g¡ä£¨x£©=2x
¡àkA=3¡Á12=3£¬kB=2¡Á2=4£¬ÇÒ|kA-kB|=1£¬
Ôò|AB|=$\sqrt{£¨2-1£©^{2}+£¨3-1£©^{2}}$=$\sqrt{5}$£¬
¡à¦Õ£¨A£¬B£©=$\frac{1}{\sqrt{5}}$£¼$\frac{\sqrt{2}}{2}$£¬¢Ù´íÎó£»
¶ÔÓÚ¢Ú£¬Èçf£¨x£©=c1£¬g£¨x£©=c2£¬ÇÒc1¡Ùc2ʱ£¬´æÔÚ²»Í¬µÄÁ½µãA¡¢B£¬Ê¹kA=kB=0£¬¡à¦Õ£¨A£¬B£©=0Êdz£Êý£¬¢ÚÕýÈ·£»
¶ÔÓÚ¢Û£¬¡ßf£¨x£©=x2+1g£¨x£©=x2
¡à¦Õ£¨A£¬B£©=$\frac{|{k}_{A}-{k}_{B}|}{|AB|}$=$\frac{|2{x}_{1}-2{x}_{2}|}{\sqrt{£¨{x}_{1}-{x}_{2}£©^{2}+£¨{{x}_{1}}^{2}+1-{{x}_{2}}^{2}£©^{2}}}$=$\frac{2}{\sqrt{1+[£¨{x}_{1}-{x}_{2}£©+\frac{1}{{x}_{1}-{x}_{2}}+2{x}_{2}]^{2}}}$
¡Ü$\frac{2}{\sqrt{1+£¨2+2{x}_{2}£©^{2}}}$£¼$\frac{2}{\sqrt{5}}$=$\frac{2\sqrt{5}}{5}$£¬¡à¢ÛÕýÈ·£»
¶ÔÓڢܣ¬ÓÉf£¨x£©=ex£¬µÃf¡ä£¨x£©=ex£¬
g£¨x£©=e-x£¬µÃg¡ä£¨x£©=-e-x£¬
¡à¦Õ£¨A£¬B£©=$\frac{|{e}^{{x}_{1}}+{e}^{-{x}_{2}}|}{\sqrt{1+£¨{e}^{{x}_{1}}-{e}^{-{x}_{2}}£©^{2}}}$£¬
t•¦Õ£¨A£¬B£©£¾1ºã³ÉÁ¢£¬¼´t|${e}^{{x}_{1}}+{e}^{-{x}_{2}}$|£¾$\sqrt{1+£¨{e}^{{x}_{1}}-{e}^{-{x}_{2}}£©^{2}}$ºã³ÉÁ¢£¬
¡àt£¾1£¬¡à¢ÜÕýÈ·£®
¹ÊÑ¡£ºC£®

µãÆÀ ±¾Ì⿼²éÁËж¨ÒåµÄº¯ÊýµÄÐÔÖÊÓëÓ¦ÓÃÎÊÌ⣬½âÌâʱӦ¸ù¾Ýº¯ÊýµÄж¨ÒåµÄÄÚÈݽøÐзÖÎö¡¢Åжϣ¬Ñ¡³ö·ûºÏÌâÒâµÄ´ð°¸£¬ÊǽÏÄѵÄÌâÄ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Èô²»µÈʽ|bx-1|¡Ü2a£¨a£¾0£¬b¡Ù0£©µÄ½â¼¯Îªx¡Ê[1£¬2]£¬Ôòa+b=$\frac{5}{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖªiÊÇÐéÊýµ¥Î»£¬$\overline{z}$ÊÇz=1+iµÄ¹²éÊý£¬Ôò$\frac{\overline{z}}{{z}^{2}}$ÔÚ¸´Æ½ÃæÄÚ¶ÔÓ¦µÄµãÔÚ£¨¡¡¡¡£©
A£®µÚÒ»ÏóÏÞB£®µÚ¶þÏóÏÞC£®µÚÈýÏóÏÞD£®µÚËÄÏóÏÞ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Éèa£¬b¡ÊR£¬¹ØÓÚx£¬yµÄ²»µÈʽ|x|+|y|£¼1ºÍax+4by¡Ý8ÎÞ¹«¹²½â£¬ÔòabµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[-16£¬16]B£®[-8£¬8]C£®[-4£¬4]D£®[-2£¬2]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖªÑù±¾MµÄÊý¾ÝÈçÏ£º80£¬82£¬82£¬84£¬84£¬84£¬86£¬86£¬86£¬86£¬Èô½«Ñù±¾MµÄÊý¾Ý·Ö±ð¼ÓÉÏ4ºóµÃµ½Ñù±¾NµÄÊý¾Ý£¬ÄÇôÁ½Ñù±¾M£¬NµÄÊý×ÖÌØÕ÷¶ÔÓ¦ÏàͬµÄÊÇ£¨¡¡¡¡£©
A£®Æ½¾ùÊýB£®ÖÚÊýC£®±ê×¼²îD£®ÖÐλÊý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖª²»µÈʽ|x-2|¡Ü1µÄ½â¼¯Óë²»µÈʽ2x2-ax+b£¼0µÄ½â¼¯Ïàͬ£®
£¨¢ñ£©Çóa£¬bµÄÖµ£»
£¨¢ò£©Çóº¯Êýf£¨x£©=a$\sqrt{x-3}$+b$\sqrt{15-4x}$µÄ×î´óÖµ¼°È¡µÃ×î´óֵʱxµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Å×ÎïÏßy2+4x=0ÉϵĵãPµ½Ö±Ïßx=2µÄ¾àÀëµÈÓÚ4£¬ÔòPµ½½¹µãFµÄ¾àÀë|PF|=£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÔÚ¼«×ø±êϵÖУ¬ÒÑÖªµã$A£¨4£¬1£©£¬B£¨3£¬1+\frac{¦Ð}{2}£©$£¬ÔòÏß¶ÎABµÄ³¤¶ÈÊÇ£¨¡¡¡¡£©
A£®1B£®$\sqrt{1+\frac{¦Ð^2}{4}}$C£®7D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®°¢»ùÃ׵¡°Æ½ºâ·¨¡±µÄÖÐÐÄ˼ÏëÊÇ£ºÒªËãÒ»¸öδ֪Á¿£¨Í¼ÐεÄÌå»ý»òÃæ»ý£©£¬ÏȽ«Ëü·Ö³ÉÐí¶à΢СµÄÁ¿£¨ÈçÃæ·Ö³ÉÏ߶Σ¬Ìå»ý·Ö³É±¡Æ¬µÈ£©£¬ÔÙÓÃÁíÒ»×é΢Сµ¥ÔªÀ´½øÐбȽϣ®Èçͼ£¬ÒÑÖªÅ×ÎïÏßy=$\frac{1}{4}$x2£¬Ö±Ïßl£ºx-2y+4=0ÓëÅ×ÎïÏß½»ÓÚA¡¢CÁ½µã£¬ÏÒACµÄÖеãΪD£¬¹ýD×÷Ö±Ï߯½ÐÐÓÚÅ×ÎïÏߵĶԳÆÖáOy£¬½»Å×ÎïÏßÓÚµãB£¬ÔòÅ×ÎïÏß¹­ÐÎABCDµÄÃæ»ýÓë¡÷ABCµÄÃæ»ýÖ®±ÈÊÇ£¨¡¡¡¡£©
A£®$\frac{3}{4}$B£®$\frac{4}{3}$C£®$\frac{2}{3}$D£®$\frac{3}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸