| A. | B. | C. | D. |
分析 由函数表达式Φ(x)=$\frac{1}{\sqrt{2π}•σ}•{e}^{{-}^{\frac{(x-μ)^{2}}{2{σ}^{2}}}}$判断函数的性质,从而解得.
解答 解:易知Φ(x)=$\frac{1}{\sqrt{2π}•σ}•{e}^{{-}^{\frac{(x-μ)^{2}}{2{σ}^{2}}}}$>0恒成立,
故排除C,
又∵Φ(x)=$\frac{1}{\sqrt{2π}•σ}•{e}^{{-}^{\frac{(x-μ)^{2}}{2{σ}^{2}}}}$的图象关于x=u对称,
故排除B,D;
故选A.
点评 本题考查了函数的性质的判断与应用及数形结合的思想应用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10 | B. | 16 | C. | 20 | D. | 36 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 垂直于x轴的直线与曲线C存在两个交点 | |
| B. | 直线y=kx+m(k,m∈R)与曲线C最多有三个交点 | |
| C. | 曲线C关于直线y=-x对称 | |
| D. | 若P1(x1,y1),P2(x2,y2)为曲线C上任意两点,则有$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$<0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 31 | B. | 161 | C. | 30 | D. | 32 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 在区间[x0,x1]上的平均变化率 | B. | 在x0处的变化率 | ||
| C. | 在x1处的变化量 | D. | 在区间[x0,x1]上的导数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 甲、乙两位同学填空题的成绩的中位数都是15 | |
| B. | 甲同学填空题的成绩的众数是15 | |
| C. | 乙同学填空题的成绩的众数是20 | |
| D. | 乙同学填空题的平均成绩要好些 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com