精英家教网 > 高中数学 > 题目详情
本小题满分14分)

如图,已知三棱锥P—ABC中,PA⊥平面ABC,设AB、PB、PC的中点分别为D、E、F,
若过D、E、F的平面与AC交于点G.
(Ⅰ)求证点G是线段AC的中点;
(Ⅱ)判断四边形DEFG的形状,并加以证明;
(Ⅲ)若PA=8,AB=8,BC=6,AC=10,求几何体BC-DEFG的体积.
DEFG为矩形,
解:(Ⅰ)∵ED∥PA,则PA∥平面DEFG,而PA平面APC,
平面DEFG平面APC=FG,∴PA∥FG,
又F为PC的中点,因此G为AC的中点;……………………4分 
(Ⅱ)∵点E、D分别AB、PB中点,则∴ED∥PA,且EDPA,
同理FG∥PA,且FGPA,∴ED∥FG,且ED=FG,
∴DEFG为平行四边形,由于PA⊥平面ABC,而 ED∥PA,
∴ED⊥平面ABC,∴ED⊥DG,因此DEFG为矩形.………………9分 
(Ⅲ)取PA的中点K,连结KE、KF,则多面体PA—DEFG分成
三棱锥P—KEF和三棱柱KEF—ADG,则多面体PA—DEFG的体积为
多面体BC—DEFG的体积为=;………………… 14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)(注意:在试题卷上作答无效)
如图,四棱锥S-ABCD中,SD底面ABCDAB//DCADDCAB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC平面SBC .
(Ⅰ)证明:SE=2EB
(Ⅱ)求二面角A-DE-C的大小 .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)

如图,在直三棱柱ABC-A1B1C1中,平面A1BC⊥侧面A1ABB1.
(Ⅰ)求证:AB⊥BC;
(Ⅱ)若直线AC与平面A1BC所成的角为θ,二面角A1-BC-A的大小为φ.判断θ与φ的大小关系,并予以证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)
四棱锥P-ABCD中,底面ABCD是正方形,
边长为,PD=,PD⊥平面ABCD
(1)求证: AC⊥PB ;
(2)求二面角A-PB-D的大小;
(3)求四棱锥外接球的半径.
(4)在这个四棱锥中放入一个球,求球的最大半径;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)19.(本题满分12分)
如图,已知四面体ABCD中,

(1)指出与面BCD垂直的面,并加以证明.
(2)若AB=BC=1,CD=,二面角C-AD-B的平面角为,求的表达式及其取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在半径为13的球面上有A,B,C三点,AB=6,BC=8,CA=10,求过A,B,C三点的截面与球心的距离。(10分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

不垂直的两条异面直线m、n在同一个平面上的射影不可能是
两条平行直线                   两条相互垂直的直线
一条直线及其外一点             同一条直线

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

异面直线a、b满足,则lab的位置关系一定是
A.lab都相交B.l至少与ab中的一条相交
C.l至多与ab中的一条相交D.l至少与ab中的一条平行

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

三棱锥的底面是两条直角边长分别为6cm和8cm的直角三角形,各侧面与底面所成的角都是60°,则三棱锥的高为
A.cmB.cmC.cmD.cm

查看答案和解析>>

同步练习册答案