精英家教网 > 高中数学 > 题目详情
点A是曲线C1
x2
9
+
y2
4
=1与C2
x2
4
-y2=1的一个交点,点A到曲线C1两焦点距离的和为m,点A到曲线C2两焦点距离之差的绝对值为n,则lg
1
m+n
的值为(  )
A、0B、-1C、1D、10
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:运用椭圆和双曲线的定义,即可得到m,n,再由对数的运算性质,即可得到结论.
解答: 解:由椭圆的定义可得,m=2×3=6,
由双曲线的定义,可得,n=2×2=4,
则lg
1
m+n
=lg
1
10
=-1.
故选B.
点评:本题考查椭圆和双曲线的定义,考查对数的运算,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

己知抛物线x2=4y,过定点M0(0,m)(m>0)的直线l交抛物线于A,B两点.
(1)分別过A,B作抛物线的两条切线,A,B为切点,求证:这两条切线的交点P(x0,y0)在定直线y=-m上;
(2)当m>2时,在抛物线上存在不同的两点P、Q关于直线l对称,弦长|PQ|是否存在最大值?若存在,求其最大值(用m表示),若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知焦点在x轴上的双曲线C的两条渐近线经过坐标原点,并且两条渐近线与以点A(0,
2
)为圆心、1为半径的圆相切,双曲线C的一个焦点与点A关于直线y=x对称.
(1)求双曲线C的渐近线和双曲线的方程;
(2)设直线y=mx+1与双曲线C的左支交于P、Q两点,另一直线l经过M(-2,0)及线段PQ的中点N,求直线l在y轴的截距b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个容器内盛有10L酒精,每次从中倒出3L后加满水,这样继续下去,则所倒次数x和剩余酒精之间的函数解析式是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左焦点F任作一条与两坐标轴都不垂直的弦AB,若点M在x轴上,且使得MF为△AMB的一条内角平分线,则称点M为该椭圆的“左特征点”,那么“左特征点”M一定是(  )
A、椭圆左准线与x轴的交点
B、坐标原点
C、椭圆右准线与x轴的交点
D、右焦点

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=|x|(x-a)2(x∈R),其中a∈R.
(Ⅰ)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)当|a|≥2,x∈(0,2]时,函数f(x)的最大值为8时,求a;
(Ⅲ)当a>0,k<0时,f(k-ex)≤f(-k2-e2x)对任意的x≥0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2
3
cos2x+2sinxcosx-
3
,求:
(1)函数f(x)的单调递增区间;
(2)若f(
α
2
-
π
6
)-f(
α
2
+
π
12
)=2
2
,且α∈(
π
2
,π)
,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

将一枚质地均匀的硬币连续投掷4次,则出现“2次正面朝上,2次反面向朝上”的概率为
 
,出现“1次正面朝上,3次反面朝上”的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(2x,1,3),
b
=(1,-2y,9)
,如果
a
b
为共线向量,则x=
 
,y=
 

查看答案和解析>>

同步练习册答案