精英家教网 > 高中数学 > 题目详情
18.在抛物线y=4x2上有一点P,使这点到直线y=4x-5的距离最短,求该点P坐标和最短距离.

分析 根据抛物线的方程设出点P的坐标,然后利用点到直线的距离公式表示出点P到直线y=4x-5的距离d,利用二次函数求最值的方法得到所求点P的坐标即可.

解答 解:设点P(t,4t2),点P到直线y=4x-5的距离为d,
则d=$\frac{|4t-4{t}^{2}-5|}{\sqrt{17}}$=$\frac{4(t-\frac{1}{2})^{2}+4}{\sqrt{17}}$,
当t=$\frac{1}{2}$时,d取得最小值,
此时P($\frac{1}{2}$,1)为所求的点,最短距离为$\frac{4\sqrt{17}}{17}$

点评 此题考查学生灵活运用点到直线的距离公式化简求值,掌握二次函数求最值的方法,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.正三棱柱ABC-A1B1C1的侧棱长为3,AB=4,D是A1C1的中点,则AD与面B1DC所成角的正弦值为$\frac{12}{13}$;点E是BC中点,则过A,D,E三点的截面面积是$\frac{3}{2}\sqrt{30}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知平面直角坐标系中两定点为A(2,3),B(5,3),若动点M满足|AM|=2|BM|.
(1)求动点M的轨迹方程;
(2)若直线l:y=x-5与M的轨迹交于C,D两点,求CD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知F1、F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则△F1PF2的形状为(  )
A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB⊥AC,AB=3,AC=AA1=6,AD=CD=5,且点M和N分别为B1C和D1D的中点.
(1)求证:MN∥平面ABCD;
(2)求二面角D1-AC-B1的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若抛物线y2=2px的焦点与双曲线$\frac{{x}^{2}}{3}$-y2=1的右焦点重合,则抛物线上一点P(2,m)到抛物线焦点的距离是4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.计算下列各式:
(1)(2a${\;}^{\frac{2}{3}}$b${\;}^{\frac{1}{2}}$)(-6a${\;}^{\frac{1}{2}}$b${\;}^{\frac{1}{3}}$)÷(-3a${\;}^{\frac{1}{6}}$b${\;}^{\frac{5}{6}}$)(a>0,b>0)
(2)$2{({lg\sqrt{2}})^2}+lg\sqrt{2}×lg5+\sqrt{{{({lg\sqrt{2}})}^2}-lg2+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求函数y=2log2x+5(2≤x≤4)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.经过一刻钟,长为10cm的分针所覆盖的面积是25πcm2

查看答案和解析>>

同步练习册答案