精英家教网 > 高中数学 > 题目详情
已知α∈(0,
π
2
)
,x∈R,函数f(x)=sin2(x+α)+sin2(x-α)-sin2x.
(1)求函数f(x)的奇偶性;
(2)是否存在常数α,使得对任意实数x,f(x)=f(
π
2
-x)
恒成立;如果存在,求出所有这样的α;如果不存在,请说明理由.
分析:解法一:(1)利用奇偶性的定义即可判断出;
(2)对等式f(x)=f(
π
2
-x)
展开化简即可得出.
解法二:先利用倍角公式进行化简再利用上述解法一即可.
解答:解法一:(1)定义域是x∈R,
∵f(-x)=sin2(-x-α)+sin2(-x+α)-sin2(-x)=sin2(x+α)+sin2(x-α)-sin2x=f(x),
∴函数f(x)是偶函数.
(2)∵f(x)=f(
π
2
-x)
,∴sin2(x+α)+sin2(x-α)-sin2x=cos2(x-α)+cos2(x+α)-cos2x,
移项得:cos(2x-2α)+cos(2x+2α)-cos2x=0,
展开得:cos2x(2cos2α-1)=0,
对于任意实数x上式恒成立,只有cos2α=
1
2

∵0<2α<π,∴α=
π
6

解法二:f(x)=
1-cos(2x+2α)
2
+
1-cos(2x-2α)
2
-
1-cos2x
2
=
1-cos2x(2cos2α-1)
2

(1)定义域是x∈R,
f(-x)=
1-cos(-2x)(2cos2α-1)
2
=
1-cos2x(2cos2α-1)
2
=f(x)

∴该函数在定义域内是偶函数.
(2)由f(x)=f(
π
2
-x)
恒成立,
1-cos2x(2cos2α-1)
2
=
1-cos2(
π
2
-x)(2cos2α-1)
2

1-cos2x(2cos2α-1)
2
=
1+cos2x(2cos2α-1)
2

化简可得:cos2x(2cos2α-1)=0对于任意实数x上式恒成立,
只有cos2α=
1
2

∵0<2α<π,∴α=
π
6
点评:熟练掌握三角函数的倍角公式、函数的奇偶性的判断方法事件他的关键.本题需要较强的计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

①已知tanα=1,α∈(0,
π
2
)
,求
2cos2
α
2
-sinα-1
2
sin(
π
4
+α)
的值;
②已知θ∈(0,
π
2
)
,且sin(
π
4
+θ)
=
3
2
,求sin(
π
4
+2θ)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α∈(0,
π
2
),tan(π-α)=-
3
4
,则sinα
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知0≤θ<2π,复数
i
cosθ+isinθ
>0
,则θ的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知θ∈(0,
π
2
)
sinθ-cosθ=
2
2
,则cos2θ=
-
3
2
-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知0≤x≤
π
2
,则函数y=cos(
π
12
-x)+cos(
12
+x)的值域是
[-
2
2
6
2
]
[-
2
2
6
2
]

查看答案和解析>>

同步练习册答案