精英家教网 > 高中数学 > 题目详情
12.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的半焦距为c,过右焦点且斜率为1的直线与双曲线的右支交于两点,若抛物线y2=4cx的准线被双曲线截得的弦长是$\frac{{2\sqrt{2}}}{3}b{e^2}$(e为双曲线的离心率),则e的值为$\frac{{\sqrt{6}}}{2}$.

分析 求出抛物线的准线,根据准线和双曲线相交的弦长关系建立方程,得出a和c的关系,从而求出离心率的值.

解答 解:∵抛物线y2=4cx的准线:x=-c,它正好经过双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点,
∴当x=-c时,$\frac{{c}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,即$\frac{{y}^{2}}{{b}^{2}}$=$\frac{{c}^{2}}{{a}^{2}}$-1=$\frac{{c}^{2}-{a}^{2}}{{a}^{2}}$=$\frac{{b}^{2}}{{a}^{2}}$,即y=±$\frac{{b}^{2}}{a}$,
即准线被双曲线C截得的弦长为:$\frac{2{b}^{2}}{a}$,
∵抛物线y2=4cx的准线被双曲线截得的弦长是$\frac{{2\sqrt{2}}}{3}b{e^2}$,
∴$\frac{2{b}^{2}}{a}$=$\frac{2\sqrt{2}}{3}$be2
即:$\sqrt{2}$c2=3ab,
∴2c4=9a2(c2-a2),
∴2e4-9e2+9=0
∴e=$\frac{\sqrt{6}}{2}$或$\sqrt{3}$,
又过焦点且斜率为1的直线与双曲线的右支交于两点,
∴渐近线y=$\frac{b}{a}$x的斜率$\frac{b}{a}$<1,
即b<c,则b2<c2
即c2-a2<a2
则c2<2a2
c<$\sqrt{2}$a,
则e=$\frac{c}{a}$<$\sqrt{2}$
∴e=$\frac{\sqrt{6}}{2}$.
故答案为:$\frac{{\sqrt{6}}}{2}$

点评 本题考查抛物线,双曲线的方程和性质,根据直线和双曲线相交的弦长建立方程关系结合直线和渐近线斜率之间的关系是解决本题的关键.综合性较强,有一定的难度,注意a,b,c的关系c2=a2+b2的关系的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.交5元钱,可以参加一次摸奖,一袋中有同样大小的球10个,其中有8个标有2元钱,2个标有5元钱,摸奖者从中任取2个球,按2个球标有的钱数之和给与奖励.设抽奖人所得奖励为X,获利为Y,请给出X与Y的关系式以及随机变量Y的分布列和E(Y).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.对于复数z=a+bi(a、b∈R,i为虚数单位),定义‖z‖=|a|+|b|,给出下列命题:
①对任何复数,都有‖z‖≥0,等号成立的充要条件是z=0;
②‖z‖=‖$\overline{z}$‖;③‖z1‖=‖z2‖,则z1=±z2
④对任何复数z1,z2,z3,不等式‖z1-z3‖≤‖z1-z2‖+‖z2-z3‖恒成立,
其中真命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知平面向量$\overrightarrow{a}$=(x,2),$\overrightarrow{b}$=(-x,x+4).
(1)求|$\overrightarrow{b}$|的最小值;
(2)若$\overrightarrow{a}$=λ$\overrightarrow{b}$(λ为实数),求$\overrightarrow{a}$-$\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,A,B,C的对边分别是 a,b,c已知 3acosA=ccosB+bcosC.
(Ⅰ)求 cosA 的值;
(Ⅱ)求$cos(2A+\frac{π}{3})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=xlna-x2-ax(a>0,a≠1).
(1)当a=e时,求函数f(x)的图象在点(0,f(0))的切线方程;
(2)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1(e为自然对数的底数),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设F1,F2分别是双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点,点M(3,$\sqrt{2}$)在此双曲线上,且|MF1|与|MF2|的夹角的余弦值为$\frac{7}{9}$,则双曲线C的离心率为(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\sqrt{2}$C.$\sqrt{3}$D.$\frac{{2\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知曲线f(x)=lnx+ax+b在(1,f(1))处的切线与此点的直线y=-$\frac{1}{2}$x+$\frac{3}{2}$垂直.
(1)求a,b的值;
(2)若函数f(x)在点P处的切线斜率为$\frac{1}{e}$+1,求函数f(x)在点P处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知中心在原点,焦点在x轴上的双曲线C的离心率等于$\frac{3}{2}$,其中一条准线方程为x=$\frac{4}{3}$,则双曲线C的方程是(  )
A.$\frac{x^2}{4}-\frac{y^2}{5}$=1B.$\frac{x^2}{4}-\frac{y^2}{{\sqrt{5}}}$=1C.$\frac{x^2}{2}-\frac{y^2}{{\sqrt{5}}}$=1D.$\frac{x^2}{2}-\frac{y^2}{5}$=1

查看答案和解析>>

同步练习册答案