精英家教网 > 高中数学 > 题目详情
3.对于复数z=a+bi(a、b∈R,i为虚数单位),定义‖z‖=|a|+|b|,给出下列命题:
①对任何复数,都有‖z‖≥0,等号成立的充要条件是z=0;
②‖z‖=‖$\overline{z}$‖;③‖z1‖=‖z2‖,则z1=±z2
④对任何复数z1,z2,z3,不等式‖z1-z3‖≤‖z1-z2‖+‖z2-z3‖恒成立,
其中真命题的个数是(  )
A.1B.2C.3D.4

分析 在①中,当z=0时,‖z‖=0;反之,当‖z‖=0时,z=0;在②中,z=a+bi,$\overline{z}$=a-bi,从而‖z‖=‖$\overline{z}$‖=|a|+|b|;在③中,当z1=2+3i,z2=3+2i时,不成立;④由绝对值的性质得到‖z1-z3‖≤‖z1-z2‖+‖z2-z3‖恒成立.

解答 解:由复数z=a+bi(a、b∈R,i为虚数单位),定义‖z‖=|a|+|b|,知:
在①中,对任何复数,都有‖z‖≥0,
当z=0时,‖z‖=0;反之,当‖z‖=0时,z=0,
∴等号成立的充要条件是z=0,故①成立;
在②中,∵z=a+bi,$\overline{z}$=a-bi,∴‖z‖=‖$\overline{z}$‖=|a|+|b|,故②成立;
在③中,当z1=2+3i,z2=3+2i时,‖z1‖=‖z2‖,但z1≠±z2,故③错误;
④对任何复数z1,z2,z3
设z1=a1+b1i,z2=a2+b2i,z3=a3+b3i,
则‖z1-z3‖=|a1-a3|+|b1-b3|,
‖z1-z2‖+‖z2-z3‖=|a1-a2|+|a2-a3|+|b1-b2|+|b2-b3|,
|a1-a3|≤|a1-a2|+|a2-a3|,
|b1-b3|≤|b1-b2|+|b2-b3|,
∴‖z1-z3‖≤‖z1-z2‖+‖z2-z3‖恒成立.故④成立.
故选:C.

点评 本题考查命题真假的判断,是中档题,解题时要认真审题,注意绝对值性质、复数概念及性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=lnx+x2-2ax+1(a为常数).
(1)讨论函数f(x)的单调性;
(2)若存在x0∈(0,1],使得对任意的a∈(-2,0],不等式2mea+f(x0)>a2+2a+4(其中e为自然对数的底数)都成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.(2x-3y)5展开式中二项式系数最大的项是720x3y2或-1080x2y3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=-x2+2a|x-1|,a>0
(1)若a=2,求函数f(x)的单调区间及最大值;
(2)若对任意的x∈[-2,$\frac{3}{2}$],恒有|f(x)|≤2成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设袋中有80个球,其中40个红球,40个黑球,这些球除颜色外完全相同,从中任取两球,则所取的两球同色的概率为(  )
A.$\frac{39}{79}$B.$\frac{1}{80}$C.$\frac{1}{2}$D.$\frac{41}{80}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知cosα-sinα=-$\frac{\sqrt{3}}{2}$,则sinα-cosα的值为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若一个三棱柱ABC-A1B1C1的三视图如图所示,主视图与左视图均为矩形,俯视图为一个正三角形.
(1)求这个三棱柱的表面积;
(2)若一根细从A点出发,在表面上绕到A1,求绳子的最短长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的半焦距为c,过右焦点且斜率为1的直线与双曲线的右支交于两点,若抛物线y2=4cx的准线被双曲线截得的弦长是$\frac{{2\sqrt{2}}}{3}b{e^2}$(e为双曲线的离心率),则e的值为$\frac{{\sqrt{6}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知点A(2,0),直线l:x=1,双曲线H:x2-y2=2,P为H上任意一点,且到l的距离为d,则$\frac{{|{PA}|}}{d}$=(  )
A.$\sqrt{2}$B.$\frac{{\sqrt{2}}}{2}$C.1D.2

查看答案和解析>>

同步练习册答案