精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)是定义域为R的奇函数,当x>0时,f(x)=x2-x+3,求函数f(x)表达式.
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:利用奇函数的性质即可得出.
解答: 解:当x=0时,f(0)=0.
设x<0,则-x>0,
∵当x>0时,f(x)=x2-x+3,
∴f(-x)=x2+x+3.
∴f(x)=-f(-x)=-x2-x-3.
f(x)=
x2-x+3,x>0
0,x=0
-x2-x-3,x<0
点评:本题考查了奇函数的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

当x≤0时,f(x)=x2-2x,且f(x)为奇函数,当x<0时,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

因式分解
(1)6x2-7x-5;  
(2)x2+4x-4;    
(3)xy-1+x-y;
(4)x3+9+3x2+3x.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex(x-a),其中a∈R.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若f(x)在[0,1]上的最小值是-
e
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个小服装厂生产某种风衣,日销售量x(件)与货件P(元/件)之间的关系为P=160-2x,生产x件所需的成本C=50+30x元,则当x=
 
时,平均每件获利最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

当2(log0.5x)2+9log0.5x+9≤0时,函数f(x)=log2
x
2
)•log2
x
4
)的最大值是(  )
A、1
B、2
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,集合A={x|
x+1
x+2
<0},B={a|2a<x<a+3},且B是∁UA的子集,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象与函数y=ax(a>0且a≠1)的图象关于直线y=x对称,记g(x)=f(x)[f(x)+2f(2)-1],若y=g(x)在区间[
1
2
,2]上是增函数,则实数a的取值范围是(  )
A、[2,+∞)
B、(0,1)∪(1,2)
C、[
1
2
,1)
D、(0,
1
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},a1=1,an+12-an2=4,Sn=a12+a22+a32+…+an2.则S2n+1-Sn=
 

查看答案和解析>>

同步练习册答案