精英家教网 > 高中数学 > 题目详情
如图,四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD为矩形,PD=DC=4,AD=2,E为PC的中点.
(I)求证:AD⊥PC;
(II)求三棱锥P-ADE的体积;
(III)在线段AC上是否存在一点M,使得PA∥平面EDM,若存在,求出AM的长;若不存在,请说明理由.
分析:(I)根据线面垂直证明线线垂直即可;
(II)利用三棱锥的换底性,求得棱锥的高与底面面积,再利用体积公式计算即可;
(III)假设存在,根据线面平行的条件,判断M点的位置,再求AM的长即可.
解答:解:(I)证明:∵PD⊥平面ABCD.∴PD⊥AD.
又因为ABCD是矩形,∴AD⊥CD.
又∵PD∩CD=D,∴AD⊥平面PCD.
又∵PC?平面PCD,
∴AD⊥PC.
(II)∵AD⊥平面PCD,VP-ADE=VA-PDE
∴AD是三棱锥A-PDE的高.
∵E为PC的中点,且PD=DC=4,
∴S△PDE=
1
2
S△PDC=
1
2
×
1
2
×4×4
=4,
∴VP-ADE=VA-PDE=
1
3
×4×2
=
8
3

(III)取AC中点M,连结EM、DM,
∵E为PC的中点,M是AC的中点,
∴EM∥PA,
又因为EM?平面EDM,PA?平面EDM,
∴PA∥平面EDM.
AM=
1
2
AC=
5

即在AC边上存在一点M,使得PA∥平面EDM,AM的长为
5
点评:本题考查直线与平面垂直的判定、棱锥的体积计算及线面平行的判定.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中点.求证:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.
(1)求证:AD⊥PB;
(2)求三棱锥P-MBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且侧面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求证:PD⊥AC;
(2)在棱PA上是否存在一点E,使得二面角E-BD-A的大小为45°,若存在,试求
AE
AP
的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,点F是PB中点.
(Ⅰ)若E为BC中点,证明:EF∥平面PAC;
(Ⅱ)若E是BC边上任一点,证明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直线PA与平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,设PC与AD的夹角为θ.
(1)求点A到平面PBD的距离;
(2)求θ的大小;当平面ABCD内有一个动点Q始终满足PQ与AD的夹角为θ,求动点Q的轨迹方程.

查看答案和解析>>

同步练习册答案