精英家教网 > 高中数学 > 题目详情
设A、B分别为椭圆=1(a>b>0)的左、右顶点,椭圆长半轴的长等于焦距,且直线x=4是它的右准线.
(1)求椭圆的方程;
(2)设P为椭圆右准线上不同于点(4,0)的任意一点,若直线BP与椭圆相交于两点B、N,求证:∠NAP为锐角.
(1)=1(2)见解析
(1)解:依题意,得解得从而b=,故椭圆的方程为=1.
(2)证明:由(1)得A(-2,0),B(2,0),设N(x0,y0),
∵N点在椭圆上,∴(4-).又N点异于顶点A、B,
∴-2<x0<2,y0≠0.由P、B、N三点共线可得P,从而=(x0+2,y0),,则·=6x0+12+=6x0+12-(2+x0)=(x0+2).
∵x0+2>0,y0≠0,∴·>0,于是∠NAP为锐角.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,M、N分别是椭圆=1的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连结AC,并延长交椭圆于点B,设直线PA的斜率为k.

(1)若直线PA平分线段MN,求k的值;
(2)当k=2时,求点P到直线AB的距离d;
(3)对任意k>0,求证:PA⊥PB..

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若点和点分别为椭圆的中心和右焦点,点为椭圆上的任意一点,则的最小值为( )
A.B.-C.D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆=1(a>b>c>0,a2=b2+c2)的左、右焦点分别为F1,F2,若以F2为圆心,b-c为半径作圆F2,过椭圆上一点P作此圆的切线,切点为T,且PT的最小值为(a-c),则椭圆的离心率e的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,已知F1,F2分别是椭圆E:=1(a>b>0)的左、右焦点,A,B分别是椭圆E的左、右顶点,且+5=0.
 
(1)求椭圆E的离心率; (2)已知点D(1,0)为线段OF2的中点,M为椭圆E上的动点(异于点A、B),连结MF1并延长交椭圆E于点N,连结MD、ND并分别延长交椭圆E于点P、Q,连结PQ,设直线MN、PQ的斜率存在且分别为k1、k2,试问是否存在常数λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知F1、F2是椭圆C的左、右焦点,点P在椭圆上,且满足PF1=2PF2,∠PF1F2=30°,则椭圆的离心率为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是椭圆的半焦距,则的取值范围为              .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,中心均为原点O的双曲线与椭圆有公共焦点,M、N是双曲线的两顶点.若M,O,N将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是(  )
A.3B.2C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为,且G上一点到G的两个焦点的距离之和为12,则椭圆G的方程为______________.

查看答案和解析>>

同步练习册答案