精英家教网 > 高中数学 > 题目详情
如图,在平面直角坐标系xOy中,M、N分别是椭圆=1的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连结AC,并延长交椭圆于点B,设直线PA的斜率为k.

(1)若直线PA平分线段MN,求k的值;
(2)当k=2时,求点P到直线AB的距离d;
(3)对任意k>0,求证:PA⊥PB..
(1)(2)(3)见解析
(1)解:由题设知,a=2,b=,故M(-2,0),N(0,-),所以线段MN中点的坐标为.由于直线PA平分线段MN,故直线PA过线段MN的中点.又直线PA过坐标原点,所以k=.
(2)解:将直线PA的方程y=2x代入椭圆方程=1,解得x=±,因此P,A.于是C,直线AC的斜率为=1,故直线AB的方程为x-y-=0.因此,d=
(3)证明:设P(x1,y1),B(x2,y2),则x1>0,x2>0,x1≠x2,A(-x1,-y1),C(x1,0),设直线PA、PB、AB的斜率分别为k、k1、k2.因为C在直线AB上,所以k2.从而k1k+1=2k1k2+1=2·+1==0.因此k1k=-1,所以PA⊥PB
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知点为椭圆右焦点,圆与椭圆的一个公共点为,且直线与圆相切于点.

(1)求的值及椭圆的标准方程;
(2)设动点满足,其中M、N是椭圆上的点,为原点,直线OM与ON的斜率之积为,求证:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆C0=1(a>b>0,a、b为常数),动圆C1:x2+y2,b<t1<a.点A1、A2分别为C0的左、右顶点,C1与C0相交于A、B、C、D四点.

(1)求直线AA1与直线A2B交点M的轨迹方程;
(2)设动圆C2:x2+y2与C0相交于A′,B′,C′,D′四点,其中b<t2<a,t1≠t2.若矩形ABCD与矩形A′B′C′D′的面积相等,证明:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,设E:=1(a>b>0)的焦点为F1与F2,且P∈E,∠F1PF2=2θ.求证:△PF1F2的面积S=b2tanθ.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的两个焦点是)和,并且经过点,抛物线的顶点E在坐标原点,焦点恰好是椭圆C的右顶点F
(1)求椭圆C和抛物线E的标准方程;
(2)过点F作两条斜率都存在且互相垂直的直线l1l2l1交抛物线E于点ABl2交抛物线E于点GH,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设A、B分别为椭圆=1(a>b>0)的左、右顶点,椭圆长半轴的长等于焦距,且直线x=4是它的右准线.
(1)求椭圆的方程;
(2)设P为椭圆右准线上不同于点(4,0)的任意一点,若直线BP与椭圆相交于两点B、N,求证:∠NAP为锐角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

P为圆A:上的动点,点.线段PB的垂直平分线与半径PA相交于点M,记点M的轨迹为Γ.
(1)求曲线Γ的方程;
(2)当点P在第一象限,且时,求点M的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是椭圆的两个焦点,过且与椭圆长轴垂直的直线交椭圆于A、B两点,若是正三角形,则这个椭圆的离心率是(     )
A.    B.    C.     D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线y=kx-k+1与椭圆=1的位置关系是________.

查看答案和解析>>

同步练习册答案