精英家教网 > 高中数学 > 题目详情
如图,椭圆C0=1(a>b>0,a、b为常数),动圆C1:x2+y2,b<t1<a.点A1、A2分别为C0的左、右顶点,C1与C0相交于A、B、C、D四点.

(1)求直线AA1与直线A2B交点M的轨迹方程;
(2)设动圆C2:x2+y2与C0相交于A′,B′,C′,D′四点,其中b<t2<a,t1≠t2.若矩形ABCD与矩形A′B′C′D′的面积相等,证明:为定值.
(1)=1(x<-a,y<0).(2)见解析
(1)解:设A(x1,y1),B(x1,-y1),又知A1(-a,0),A2(a,0),
则直线A1A的方程为y=(x+a),①直线A2B的方程为y=(x-a).②
由①②得y2(x2-a2).③由点A(x1,y1)在椭圆C0上,故=1.
从而=b2,代入③得=1(x<-a,y<0).
(2)证明:设A′(x2,y2),由矩形ABCD与矩形A′B′C′D′的面积相等,得4|x1||y1|=4|x2||y2|,故.因为点A,A′均在椭圆上,所以b2=b2.由t1≠t2,知x1≠x2,所以=a2,从而=b2,因此=a2+b2为定值
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率,长轴的左右端点分别为.
(1)求椭圆的方程;
(2)设动直线与曲线有且只有一个公共点,且与直线相交于点.
求证:以为直径的圆过定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,M、N分别是椭圆=1的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连结AC,并延长交椭圆于点B,设直线PA的斜率为k.

(1)若直线PA平分线段MN,求k的值;
(2)当k=2时,求点P到直线AB的距离d;
(3)对任意k>0,求证:PA⊥PB..

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若点和点分别为椭圆的中心和右焦点,点为椭圆上的任意一点,则的最小值为( )
A.B.-C.D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆E:+y2=1(a>1)的上顶点为M(0,1),两条过M的动弦MA、MB满足MA⊥MB.
(1)当坐标原点到椭圆E的准线距离最短时,求椭圆E的方程;
(2)若Rt△MAB面积的最大值为,求a;
(3)对于给定的实数a(a>1),动直线AB是否经过一定点?如果经过,求出定点坐标(用a表示);反之,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆=1(a>b>0)的离心率为,且过点P,A为上顶点,F为右焦点.点Q(0,t)是线段OA(除端点外)上的一个动点,

过Q作平行于x轴的直线交直线AP于点M,以QM为直径的圆的圆心为N.
(1)求椭圆方程;
(2)若圆N与x轴相切,求圆N的方程;
(3)设点R为圆N上的动点,点R到直线PF的最大距离为d,求d的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆=1(a>b>c>0,a2=b2+c2)的左、右焦点分别为F1,F2,若以F2为圆心,b-c为半径作圆F2,过椭圆上一点P作此圆的切线,切点为T,且PT的最小值为(a-c),则椭圆的离心率e的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是椭圆的半焦距,则的取值范围为              .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知动点在椭圆上,为椭圆的右焦点,若点满足,则的最小值为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案