精英家教网 > 高中数学 > 题目详情
已知等差数列{an}满足:a10=1,S20=0.
(1)求数列{|an|}的前20项的和;
(2)若数列{bn}满足:log2bn=an+10,求数列{bn}的前n项和.
(1)设等差数列{an}的公差为d,∵a10=1,S20=0.
a1+9d=1
20a1+
20×19
2
d=0
,解得a1=19,d=-2,
∴an=19+(n-1)(-2)=21-2n,
可见,n≤10时,an>0,n>10时,an<0,
记等差数列{an}的前n项和为Sn
则数列{|an|}的前20项的和:
Tn=a1+a2+…+a10-a11-a12-…-a20
=S10+[-(S20-S10)]=2S10-S20=2S10
而a1=19,∴Tn=2S10=2[
19+1
2
×10]=200

(2)由log2bn=an+10得,bn=2an+10=21-2n
因为
bn+1
bn
=
2-1-2n
21-2n
=
1
4

所以数列{bn}是以b1=
1
2
为首项,q=
1
4
为公比的等比数列,
数列{bn}的前n项和为
1
2
[1-(
1
4
)
n
]
1-
1
4
=
2
3
-
2
3
•(
1
4
)n
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设等差数列{an}的前n项和为Sn,已知a3=9,S6=66.
(1)求数列{an}的通项公式an及前n项的和Sn
(2)设数列{
1
anan+1
}
的前n项和为Tn,证明:Tn
1
4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
2
n•(an+2)
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}的前n项和为Sn,其中a1=
1
2
,5Sn=7an-an-1+5Sn-1(n≥2);等差数列{bn},其中b3=2,b5=6,.
(1)求数列{an}的通项公式;
(2)若cn=(bn+3)an,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知数列{an}时公差不为零的等差数列,a1=1,a1,a3,a9成等比数列,则数列{an2an}的前n项和sn=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等差数列{an}前三项的和为-3,前三项的积为8.
(1)求等差数列{an}的通项公式;
(2)若a2,a3,a1成等比数列,求数列{|an|}的前n项和.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*
(Ⅰ)证明数列{an-n}是等比数列;
(Ⅱ)求数列{an}的前n项和Sn
(Ⅲ)证明不等式Sn+1≤4Sn,对任意n∈N*皆成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设an=
1
n
sin
25
,Sn=a1+a2+…+an,在S1,S2,…S100中,正数的个数是(  )
A.25B.50C.75D.100

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知数列{an}满足a1=1,an+1,则其前6项之和是(  )
A.16B.20C.33D.120

查看答案和解析>>

同步练习册答案