精英家教网 > 高中数学 > 题目详情

已知函数,其中.
(Ⅰ)讨论的单调性;
(Ⅱ)若在其定义域内为增函数,求正实数的取值范围;
(Ⅲ)设函数,当时,若,总有成立,求实数的取值范围.

(1)见解析;(2);(3).

解析试题分析:(1)求出,然后根据 的符号讨论的单调性;(2)求出,然后将条件转化为 , .然后分离参数得到,然后用基本不等式求得即可得到 的取值范围;(3)将“若,总有成立”转化成“ 在 上的最大值不小于 在 上的最大值”即可求得的取值范围.
试题解析:(1)的定义域为,且
①当 时, , 在 上单调递增;
②当 时,由,得 ;由 ,得 ;
 在 上单调递减,在 上单调递增.
(2) , 的定义域为 . .
因为 在其定义域内为增函数,所以 , .
 .
 ,当且仅当 时取等号,所以 .
(3)当 时, , .
 得 或 .
 时, ;当 时, .
所以在 上, .
而“,总有成立”等价于“ 在 上的最大值不小于 在 上的最大值”.
 在 上的最大值为 ,
所以有.
所以实数的取值范围是.
考点:1.导数求函数的单调性;2.分离参数解函数恒成立问题;3.转化思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,其中.
(1)若,求曲线在点处的切线方程;
(2)求函数的极大值和极小值,若函数有三个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求处切线方程;
(2)求证:函数在区间上单调递减;
(3)若不等式对任意的都成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(I)讨论函数的单调性;
(Ⅱ)当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)求的单调区间;
(Ⅲ)若函数没有零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数若函数在x = 0处取得极值.
(1) 求实数的值;
(2) 若关于x的方程在区间[0,2]上恰有两个不同的实数根,求实数的取值范围;
(3) 证明:对任意的自然数n,有恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中是自然对数的底数.
(Ⅰ)求函数的单调区间和极值;
(Ⅱ)若函数对任意满足,求证:当时,
(Ⅲ)若,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数在点处的切线方程为,求的值;
(2)若,函数在区间内有唯一零点,求的取值范围;
(3)若对任意的,均有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,
⑴求证函数上的单调递增;
⑵函数有三个零点,求的值;
⑶对恒成立,求a的取值范围。

查看答案和解析>>

同步练习册答案