精英家教网 > 高中数学 > 题目详情

是正数组成的数列,.若点在函数的导函数图像上.
(1)求数列的通项公式;
(2)设,是否存在最小的正数,使得对任意都有成立?请说明理由.

(1);(2)存在最小的正数.

解析试题分析:(1)由点在函数的导函数图像上可得的递推公式,然后由递推公式整理得,再由是正数数列得,从而知其为等差数列而得到通项公式;(2)数列的通项公式代入,得到,即可通过裂项相消法解决问题.注意凡是类似于通项公式为基本都可用裂项相消法予以解决.
试题解析:(1)                                                 1分
由点图像上,得  2分
整理得:                               4分
,∴                                                5分
是首项为=3,公差为2的等差数列.
                                                            6分
(2)                      9分
                    10分
=                                                         12分
     ∴存在最小的正数,使得不等式成立.                   14分
考点:1.常见函数的导数公式;2.等差数列的通项公式;3.裂项相消法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列的通项.
(Ⅰ)求
(Ⅱ)判断数列的增减性,并说明理由;
(Ⅲ)设,求数列的最大项和最小项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知{an}是等差数列,a1=3,Sn是其前n项和,在各项均为正数的等比数列{bn}中,b1=1,且b2+S2=10,S5 =5b3+3a2.
(I )求数列{an}, {bn}的通项公式;
(II)设,数列{cn}的前n项和为Tn,求证

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于任意的不超过数列的项数),若数列的前项和等于该数列的前项之积,则称该数列为型数列。
(1)若数列是首项型数列,求的值;
(2)证明:任何项数不小于3的递增的正整数列都不是型数列;
(3)若数列型数列,且试求的递推关系,并证明恒成立。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的各项均为正数,为其前项和,对于任意的,满足关系式
(1)求数列的通项公式;
(2)设数列的通项公式是,前项和为,求证:对于任意的正整数,总有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若正数项数列的前项和为,首项,点在曲线上.
(1)求
(2)求数列的通项公式
(3)设,表示数列的前项和,若恒成立,求及实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和,满足:.
(Ⅰ)求数列的通项
(Ⅱ)若数列的满足为数列的前项和,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和为,若
(1)求数列的通项公式:
(2)令
①当为何正整数值时,
②若对一切正整数,总有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列{an}的前n项和为Sn=2n2,{bn}为等比数列,且a1=b1,b1(a2-a1)=b2.
(1)求数列{an}和{bn}的通项公式;
(2)设cnan bn,求数列{cn}的前n项和Tn.

查看答案和解析>>

同步练习册答案