精英家教网 > 高中数学 > 题目详情
某市一家庭今年一月份、二月份、和三月份煤气用量和支付费用如下表所示:
月份
用气量(立方米)
煤气费(元)
1
4
4.00
2
25
14.00
3
35
19.00
(该市煤气收费的方法是:煤气费=基本费+超额费+保险费)
若每月用气量不超过最低额度立方米时,只付基本费3元+每户每月定额保险费元;若用气量超过立方米时,超过部分每立方米付元.
⑴根据上面的表格求的值;
⑵若用户第四月份用气30立方米,则应交煤气费多少元?
(Ⅰ);(Ⅱ)16.5元

试题分析:某些实际问题的函数解析式常用分段函数表示,须针对自变量的分段变化情况,列出各段不同的解析式,再依据自变量的代不同的解析式.
试题解析:(1)设每月用气量为立方米,支付费用为元,
根据题意得                 4分
由题设知,
从表格中可以看出第二、三月份的费用均大于8元,
故用气量25立方米、35立方米均应大于最低额A立方米,            6分
从而将代入(1)、(2)得         8分
解得                                 9分
(2)由(1)得                           11分
代入,得∴四月份煤气费应付16.5元.         12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

用一块钢锭烧铸一个厚度均匀,且表面积为2m2的正四棱锥形有盖容器(如下图)。设容器高为m,盖子边长为m,

(1)求关于的解析式;
(2)设容器的容积为V m3,则当h为何值时,V最大? 并求出V的最大值(求解本题时,不计容器厚度).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

“城中观海”是近年来国内很多大中型城市内涝所致的现象,究其原因,除天气因素、城市规划等原因外,城市垃圾杂物也是造成内涝的一个重要原因。暴雨会冲刷城市的垃圾杂物一起进入下水道,据统计,在不考虑其它因素的条件下,某段下水道的排水量V(单位:立方米/小时)是杂物垃圾密度x(单位:千克/立方米)的函数。当下水道的垃圾杂物密度达到2千克/立方米时,会造成堵塞,此时排水量为0;当垃圾杂物密度不超过0.2千克/立方米时,排水量是90立方米/小时;研究表明,时,排水量V是垃圾杂物密度x的一次函数。
(Ⅰ)当时,求函数V(x)的表达式;
(Ⅱ)当垃圾杂物密度x为多大时,垃圾杂物量(单位时间内通过某段下水道的垃圾杂物量,单位:千克/小时)可以达到最大,求出这个最大值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数, 则的值是              .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为实数,函数
(1)若,求的取值范围;
(2)求的最小值;
(3)设函数,直接写出(不需给出演算步骤)不等式的解集.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知某公司生产品牌服装的年固定成本为10万元,每生产千件,须另投入2.7万元,设该公司年内共生产品牌服装千件并全部销售完,每千件的销售收入为万元,且
(1)写出年利润(万元)关于年产量(千件)的函数解析式;
(2)当年产量为多少千件时,该公司在这一品牌服装的生产中所获年利润最大?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在直角坐标系中, 如果两点A(a, b), B(-a, -b)在函数的图象上, 那么称[A, B]为函数f(x)的一组关于原点的中心对称点 ([A , B]与[B, A]看作一组). 函数
关于原点的中心对称点的组数为_____________

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则函数的零点位于区间(      )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数是定义在R上的不恒为0的偶函数,且对任意都有,则(      )
A.0B.C.1D.

查看答案和解析>>

同步练习册答案