【题目】已知线段AB的端点B在圆C1:x2+(y﹣4)2=16上运动,端点A的坐标为(4,0),线段AB中点为M, (Ⅰ)试求M点的轨C2方程;
(Ⅱ)若圆C1与曲线C2交于C,D两点,试求线段CD的长.
【答案】解:(Ⅰ)设M(x,y),B(x′,y′), 则由题意可得: ,解得: ,
∵点B在圆C1:x2+(y﹣4)2=16上,
∴(x′)2+(y′﹣4)2=16,
∴(2x﹣4)2+(2y﹣4)2=16,即(x﹣2)2+(y﹣2)2=4.
∴轨迹C2方程为(x﹣2)2+(y﹣2)2=4;
(Ⅱ)由方程组 ,解得直线CD的方程为x﹣y﹣1=0,
圆C1 的圆心C1(0,4)到直线CD的距离为 ,
圆C1 的半径为4,
∴线段CD的长为
【解析】(Ⅰ)设出M和B的坐标,由中点坐标公式把B的坐标用m的坐标表示,代入圆C1的方程得答案;(Ⅱ)求出圆C1的圆心坐标和半径,求出圆心到直线CD的距离利用勾股定理得答案.
科目:高中数学 来源: 题型:
【题目】已知命题p:函数f(x)=logax在区间(0,+∞)上是单调递增函数;命题q:不等式(a﹣2)x2+2(a﹣2)x﹣4<0对任意实数x恒成立.若p∨q为真命题,且p∧q为假命题,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆O为Rt△ABC的外接圆,AB=AC,BC=4,过圆心O的直线l交圆O于P,Q两点,则 的取值范围是( )
A.[﹣8,﹣1]
B.[﹣8,0]
C.[﹣16,﹣1]
D.[﹣16,0]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx+2x+x﹣1,若f(x2﹣4)<2,则实数x的取值范围是( )
A.(﹣2,2)
B.(2, )
C.(﹣ ,﹣2)
D.(﹣ ,﹣2)∪(2, )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE=4.如图2所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连接AB,设点F是AB的中点.
(1)求证:DE⊥平面BCD;
(2)若EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥B﹣DEG的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知 为空间中两条不同的直线, 为空间中两个不同的平面,下列命题正确的是( )
A.若 则
B.若 ,则
C.若 在 内的射影互相平行,则
D.若 ,则
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com