精英家教网 > 高中数学 > 题目详情

【题目】已知两点,直线AM,BM相交于点M,且这两条直线的斜率之积为.

(1)求点M的轨迹方程;

(2)记点M的轨迹为曲线C,曲线C上在第一象限的点P的横坐标为1,过点P的斜率不为零且互为相反数的两条直线分别交曲线CQ,R(异于点P),求直线QR的斜率.

【答案】(1)(2)

【解析】

(1)设点通过即可求出曲线C的方程;

(2)把代入曲线C的方程,可得直线PQ与直线PR的斜率互为相反数,设直线PQ的方程为与椭圆方程联立,由于是方程的一个解,所以方程的另一个解为,同理可得直线QR的斜率.

(1)设点因为所以

整理得点所在的曲线C的方程为:.

(2)由题意可得点

直线PQ与直线PR的斜率互为相反数,设直线PQ的方程为

与椭圆的方程联立消去y,

由于是方程的一个解,所以方程的另一个解为

同理

故直线RQ的斜率为

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知AB是圆O的直径,C、D是圆O上的两个点,CE⊥AB于E,BD交AC于G,交CE于F,CF=FG.
(Ⅰ)求证:C是劣弧的中点;
(Ⅱ)求证:BF=FG.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第6节的容积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体ABCD﹣A1B1C1D1 , 则下列说法不正确的是(
A.若点P在直线BC1上运动时,三棱锥A﹣D1PC的体积不变
B.若点P是平面A1B1C1D1上到点D和C1距离相等的点,则P点的轨迹是过D1点的直线
C.若点P在直线BC1上运动时,直线AP与平面ACD1所成角的大小不变
D.若点P在直线BC1上运动时,二面角P﹣AD1﹣C的大小不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若函数存在单调递减区间,求实数的取值范围;

(Ⅱ)若,证明: ,总有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记min{x,y}= 设f(x)=min{x2 , x3},则(
A.存在t>0,|f(t)+f(﹣t)|>f(t)﹣f(﹣t)
B.存在t>0,|f(t)﹣f(﹣t)|>f(t)﹣f(﹣t)
C.存在t>0,|f(1+t)+f(1﹣t)|>f(1+t)+f(1﹣t)
D.存在t>0,|f(1+t)﹣f(1﹣t)|>f(1+t)﹣f(1﹣t)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(﹣2,0),B(0,1)在椭圆C: (a>b>0)上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)P是线段AB上的点,直线y= x+m(m≥0)交椭圆C于M、N两点,若△MNP是斜边长为 的直角三角形,求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,a、b、c分别是角A、B、C的对边,若A满足2cos2A+cos(2A+ )=﹣
(Ⅰ)求A的值;
(Ⅱ)若c=3,△ABC的面积为3 ,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】矩形的两条对角线相交于点 边所在直线的方程为,点边所在直线上.

)求边所在直线的方程;

)求矩形外接圆的方程;

查看答案和解析>>

同步练习册答案