精英家教网 > 高中数学 > 题目详情
如图,P是抛物线C:y=
1
2
x2上一点,直线l过点P且与抛物线C交于另一点Q.
(Ⅰ)若直线l与过点P的切线垂直,求线段PQ中点M的轨迹方程;
(Ⅱ)若直线l不过原点且与x轴交于点S,与y轴交于点T,试求
|ST|
|SP|
+
|ST|
|SQ|
的取值范围.
(Ⅰ)设P(x1,y1),Q(x2,y2),M(x0,y0),依题意x1≠0,y1>0,y2>0.
由y=
1
2
x2,①
得y'=x.
∴过点P的切线的斜率k=x1
∴直线l的斜率kl=-
1
k
=-
1
x1

∴直线l的方程为y-
1
2
x12=-
1
x1
(x-x1),②
联立①②消去y,得x2+
2
x1
x-x12-2=0.
∵M是PQ的中点
∴x0=
x1+x2
2
=-
1
x1
,y0=
1
2
x12-
1
x1
(x0-x1
消去x1,得y0=x02+
1
2
x20
+1(x0≠0),
∴PQ中点M的轨迹方程为y=x2+
1
2
x20
+1(x≠0).

(Ⅱ)设直线l:y=kx+b,依题意k≠0,b≠0,则T(0,b).
分别过P、Q作PP'⊥x轴,QQ'⊥y轴,垂足分别为P'、Q',则
|ST|
|SP|
+
|ST|
|SQ|
=
|OT|
|P′P|
+
|OT|
|Q′Q|
=
|b|
|y1|
+
|b|
|y2|

由y=
1
2
x2,y=kx+b消去x,得y2-2(k2+b)y+b2=0.③
则y1+y2=2(k2+b),y1y2=b2
|ST|
|SP|
+
|ST|
|SQ|
=|b|(
1
y1
+
1
y2
)≥2|b|
1
y1y2
=2|b|
1
b2
=2.
∵y1、y2可取一切不相等的正数,
|ST|
|SP|
+
|ST|
|SQ|
的取值范围是(2,+∞).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

点P与定点F(1,0)的距离和它到定直线x=5的距离比是
1
5
,则点P的轨迹方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

圆C:x2+y2-2x-2y-7=0,设P是该圆的过点(3,3)的弦的中点,则动点P的轨迹方程是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,AB为半圆的直径,P为半圆上一点,|AB|=10,∠PAB=a,且sina=
4
5
,建立适当的坐标系.
(1)求A、B为焦点且过P点的椭圆的标准方程.
(2)动圆M过点A,且与以B为圆心,以2
5
为半径的圆相外切,求动圆圆心M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

点M(x,y)到定点F(5,0)的距离和它到定直线l:x=
9
5
的距离的比是常数
5
3
,求点M的轨迹.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知P是曲线y=2x2-1上的动点,定点A(0,-1),且点P不同于点A,若M点满足
PM
=2
MA
,求点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知l1与l2是互相垂直的异面直线,l1在平面α内,l2α,平面α内的动点P到l1与l2的距离相等,则点P的轨迹是(  )
A.圆B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的一个焦点为F(0,1),离心率,则椭圆的标准方程为(      ).
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆=1的焦点是F1,F2,如果椭圆上一点P满足PF1⊥PF2,则下面结论正确的是(  )
A.P点有两个B.P点有四个
C.P点不一定存在 D.P点一定不存在

查看答案和解析>>

同步练习册答案