精英家教网 > 高中数学 > 题目详情
点P与定点F(1,0)的距离和它到定直线x=5的距离比是
1
5
,则点P的轨迹方程为______.
设P(x,y),
|PF|=
(x-1)2+y2
,P到定直线x=5的距离为|5-x|,
由P与定点F(1,0)的距离和它到定直线x=5的距离比是
1
5
,得
(x-1)2+y2
|5-x|
=
1
5
,整理得:
x2
5
+
y2
4
=1

∴点P的轨迹方程为
x2
5
+
y2
4
=1

故答案为:
x2
5
+
y2
4
=1
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知⊙O1:(x-1)2+y2=9,⊙O2x2+y2-10x+m2-2m+17=0(m∈R)
(Ⅰ)求⊙O2半径的最大值;
(Ⅱ)当⊙O2半径最大时,试判断⊙O1和⊙O2的位置关系;
(Ⅲ)⊙O2半径最大时,如果⊙O1和⊙O2相交.
(1)求⊙O1和⊙O2公共弦所在直线l1的方程;
(2)设直线l1交x轴于点F,抛物线C以坐标原点O为顶点,以F为焦点,直线l2:y=k(x-3)(k≠0)与抛物线C相交于A、B两点,证明:
OA
OB
为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一动点在圆x2+y2=1上移动时,它与定点B(2,3)连线的中点轨迹是(  )
A.(2x-2)2+(2y-3)2=1B.(4-x)2+(6-y)2=1
C.(x+2)2+(y+3)2=1D.(x+2)2+(y+3)2=4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0.
(1)当且仅当m在什么范围内,该方程表示一个圆;
(2)当m在以上范围内变化时,求圆心的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定直线l与平面α成60°角,点P是平面α内的一动点,且点P到直线l的距离为3,则动点P的轨迹是(  )
A.圆B.椭圆的一部分
C.抛物线的一部分D.椭圆

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,点P到两点(0,-
3
),(0,
3
)的距离之和等于4,设点P的轨迹为C.
(1)写出C的方程;
(2)设直线y=kx+1与C交于A,B两点.k为何值时以AB为直径的圆经过原点O?此时|AB|的值是多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,森林的边界是直线L,兔子和狼分别在L的垂线AC上的点A和点B处(AB=BC=a),现兔子沿线AD(或AE)以速度2v准备越过L向森林逃跑,同时狼沿线段BM(点M在AD上)或BN(点N在AE上)以速度v进行追击,若狼比兔子先到或同时到达点M(或N)处,狼就会吃掉兔子.求兔子的所有不幸点(即可能被狼吃掉的地方)组成的区域的面积S.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设m∈R,在平面直角坐标系中,已知向量
a
=(mx,y+1)
,向量
b
=(x,y-1)
a
b
,动点M(x,y)的轨迹为E.求轨迹E的方程,并说明该方程所表示曲线的形状.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,P是抛物线C:y=
1
2
x2上一点,直线l过点P且与抛物线C交于另一点Q.
(Ⅰ)若直线l与过点P的切线垂直,求线段PQ中点M的轨迹方程;
(Ⅱ)若直线l不过原点且与x轴交于点S,与y轴交于点T,试求
|ST|
|SP|
+
|ST|
|SQ|
的取值范围.

查看答案和解析>>

同步练习册答案