精英家教网 > 高中数学 > 题目详情
如图,某生态园欲把一块四边形地辟为水果园,其中.若经过上一点上一点铺设一条道路,且将四边形分成面积相等的两部分,设

(1)求的关系式;
(2)如果是灌溉水管的位置,为了省钱,希望它最短,求的长的最小值;
(3)如果是参观路线,希望它最长,那么的位置在哪里?
(1);(2);(3)P点在B处,Q点在E处.

试题分析:(1)由题目条件可求出,延长BD、CE交于点A,则由得出结论,于是可知的面积,而它的面积又可用表示出来,于是问题得到解决;(2)中利用余弦定理,可将的长度用表示,再利用(1)的结果消去,则得到关于的函数关系式,然后利用基本不等式或求函数最值的一般方法求出函数的最小值或最大值,要注意函数的定义域;(3)思路同(2).

试题解析:(1)易知,延长BD、CE交于点A,则,则
.           4分
(2)
          6分
,即时,
.                  8分
(3)令,   10分

,令得,,                   12分
上是减函数,在上是增函数,
,PQmax = 2,                14分
此时,P点在B处,Q点在E处.         16分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某医药研究所开发一种新药,据监测,如果成人按规定剂量服用该药,服药后每毫升血液中的含药量与服药后的时间之间近似满足如图所示的曲线.其中是线段,曲线段是函数是常数的图象.

(1)写出服药后每毫升血液中含药量关于时间的函数关系式;
(2)据测定:每毫升血液中含药量不少于时治疗有效,假若某病人第一次服药为早上,为保持疗效,第二次服药最迟是当天几点钟?
(3)若按(2)中的最迟时间服用第二次药,则第二次服药后再过,该病人每毫升血液中含药量为多少

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

“城中观海”是近年来国内很多大中型城市内涝所致的现象,究其原因,除天气因素、城市规划等原因外,城市垃圾杂物也是造成内涝的一个重要原因。暴雨会冲刷城市的垃圾杂物一起进入下水道,据统计,在不考虑其它因素的条件下,某段下水道的排水量V(单位:立方米/小时)是杂物垃圾密度x(单位:千克/立方米)的函数。当下水道的垃圾杂物密度达到2千克/立方米时,会造成堵塞,此时排水量为0;当垃圾杂物密度不超过0.2千克/立方米时,排水量是90立方米/小时;研究表明,时,排水量V是垃圾杂物密度x的一次函数。
(Ⅰ)当时,求函数V(x)的表达式;
(Ⅱ)当垃圾杂物密度x为多大时,垃圾杂物量(单位时间内通过某段下水道的垃圾杂物量,单位:千克/小时)可以达到最大,求出这个最大值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为实数,函数
(1)若,求的取值范围;
(2)求的最小值;
(3)设函数,直接写出(不需给出演算步骤)不等式的解集.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知某公司生产品牌服装的年固定成本为10万元,每生产千件,须另投入2.7万元,设该公司年内共生产品牌服装千件并全部销售完,每千件的销售收入为万元,且
(1)写出年利润(万元)关于年产量(千件)的函数解析式;
(2)当年产量为多少千件时,该公司在这一品牌服装的生产中所获年利润最大?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.
(1)请写出的表达式(不需证明);
(2)求的极小值;
(3)设的最大值为的最小值为,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则函数的零点位于区间(      )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于函数f(x),若在其定义域内存在两个实数a,b(a<b),使当x∈[a,b]时,f(x)的值域也是[a,b],则称函数f(x)为“布林函数”,区间[a,b]称为函数f(x)的“等域区间”.
(1)布林函数的等域区间是        .
(2)若函数是布林函数,则实数k的取值范围是          .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

记定义在R上的函数的导函数为.如果存在,使得成立,则称为函数在区间上的“中值点”.那么函数在区间[-2,2]上“中值点”的为____  

查看答案和解析>>

同步练习册答案