精英家教网 > 高中数学 > 题目详情

已知x = 4是函数的一个极值点,(b∈R).
(Ⅰ)求的值;          
(Ⅱ)求函数的单调区间;
(Ⅲ)若函数有3个不同的零点,求的取值范围.

(Ⅰ),     (x>0)…………………2’
由已知 得, , 解得.  ……4’
(Ⅱ)由(Ⅰ)知,
,
.
时,;当时,时,.
所以的单调增区间是的单调减区间是.…………8’
(Ⅲ)由(Ⅱ)知,内单调递增,在内单调递减,在上单调递增,
且当时,.
所以的极大值为+b,极小值为+b.…………10’
又因为,
.
当且仅当有三个零点.…………12’
所以,的取值范围为.     ………………………14’

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

其中,曲线 在点处的切线垂直于轴.
(Ⅰ)求的值;
(Ⅱ)求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为实数,的导函数.
(Ⅰ)若,求上的最大值和最小值;
(Ⅱ)若上均单调递增,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(I)讨论的单调性;
(II)若有两个极值点,记过点的直线的斜率为,问:是否存在,使得?若存在,求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数,已知是奇函数。
(Ⅰ)求b,c的值;
(Ⅱ)求g(x)的单调区间与极值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数:
(1)讨论函数的单调性;
(2)若函数的图像在点处的切线的倾斜角为,问:在什么范围取值时,函数在区间上总存在极值?
(3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.(e是自然对数的底数)
(1)判断上是否是单调函数,并写出在该区间上的最小值;
(2)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若曲线在点处的切线的倾斜角为,求实数的值;
(2)若函数在区间上单调递增,求实数实数的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在点处的切线方程为
(I)求的表达式;
(Ⅱ)满足恒成立,则称的一个“上界函数”,如果函数R)的一个“上界函数”,求t的取值范围;
(Ⅲ)当时,讨论在区间(0,2)上极值点的个数.

查看答案和解析>>

同步练习册答案