精英家教网 > 高中数学 > 题目详情

函数,已知是奇函数。
(Ⅰ)求b,c的值;
(Ⅱ)求g(x)的单调区间与极值。

(Ⅰ)= ……2分
,可得:
=
……6分
(Ⅱ), ……7分
如下图所示:
……10分
所以g(x)的增区间为,减区间为……12分
时,g(x)取得极大值为;……13分
时,g(x)取得极小值为……14分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分14分)
设函数
(1)求函数极值;
(2)当恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数时都取得极值
(1)求的值与函数的单调区间
(2)若对,不等式恒成立,求的取值范围 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(x∈R).
(1)求函数的单调区间和极值;
(2)已知函数的图象与函数的图象关于直线x=1对称,证明当x>1时,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)若的两个极值点为,且,求实数的值;
(2)是否存在实数,使得上的单调函数?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知x = 4是函数的一个极值点,(b∈R).
(Ⅰ)求的值;          
(Ⅱ)求函数的单调区间;
(Ⅲ)若函数有3个不同的零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知x=4是函数f(x)=alnx+x2-12x+11的一个极值点.
(1)求实数a的值;
(2)求函数f(x)的单调区间;
(3)若直线y=b与函数y=f(x)的图象有3个交点,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
知二次函数的图象经过点与点,设函数
处取到极值,其中
(1)求的二次项系数的值;
(2)比较的大小(要求按从小到大排列);
(3)若,且过原点存在两条互相垂直的直线与曲线均相切,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax+blnx在x=1处有极值.
(1)求a,b的值;
(2)判断函数y=f(x)的单调性并求出单调区间.

查看答案和解析>>

同步练习册答案