精英家教网 > 高中数学 > 题目详情
设函数f(x,n)=(1+x)n,(n∈N*).
(1)求f(x,6)的展开式中系数最大的项;
(2)若f(i,n)=32i(i为虚数单位),求C
 
1
n
-C
 
3
n
+C
 
5
n
-C
 
7
n
+C
 
9
n
考点:二项式定理的应用
专题:计算题,二项式定理
分析:(1)展开式中系数最大的项是第4项;
(2)(1+i)n=32i,两边取模,求出n,利用(1+x)10=(
C
0
10
-
C
2
10
+
C
4
10
-
C
6
10
+
C
8
10
-
C
10
10
+(
C
1
10
-
C
3
10
+
C
5
10
-
C
7
10
+
C
9
10
)i=32i,可得结论.
解答: 解:(1)展开式中系数最大的项是第4项=
C
3
6
(x)3
=20x3;…5′
(2)由已知,(1+i)n=32i,两边取模,得(
2
)n
=32,所以n=10.
所以C
 
1
n
-C
 
3
n
+C
 
5
n
-C
 
7
n
+C
 
9
n
=
C
1
10
-
C
3
10
+
C
5
10
-
C
7
10
+
C
9
10

而(1+x)10=(
C
0
10
-
C
2
10
+
C
4
10
-
C
6
10
+
C
8
10
-
C
10
10
+(
C
1
10
-
C
3
10
+
C
5
10
-
C
7
10
+
C
9
10
)i=32i
所以
C
1
10
-
C
3
10
+
C
5
10
-
C
7
10
+
C
9
10
=32.
点评:本题考查二项式定理的运用,考查学生分析解决问题的能力,考查复数的运算,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,⊙O的直径AB=4,C为圆周上一点,AC=3,CD是⊙O的切线,BD⊥CD于D,则CD=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给定有限单调递增数列{xn}(至少有两项),其中xi≠0(1≤i≤n),定义集合A={(xi,xj)|1≤i,j≤n,且i,j∈N*}.若对任意的点A1∈A,存在点A2∈A使得
OA1
OA2
(O为坐标原点),则称数列{xn}具有性质P.例如数列{xn}:-2,2具有性质P.以下对于数列{xn}的判断:
①数列{xn}:-2,-1,1,3具有性质P;
②若数列{xn}满足xn=
-1,n=1
2n-1,2≤n≤2014
,则该数列具有性质P;
③若数列{xn}具有性质P,则数列{xn}中一定存在两项xi,xj,使得xi+xj=0;
其中正确的是(  )
A、①②③B、②③C、①②D、③

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1
的两焦点F1(-1,0),F2(1,0),且离心率为
2
2

(Ⅰ)求椭圆C的标准方程;
(Ⅱ)经过椭圆C的上顶点B的直线与椭圆另一个交点为A,且满足
BA
BF2
=2
,求△ABF2外接圆的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

2013年12月21日上午10时,省会首次启动重污染天气Ⅱ级应急响应,正式实施机动车车尾号限行,当天某报社为了解公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:
年龄(岁) [15,25) [25,35) [35,45) [45,55) [55,65) [65,75]
频数 5 10 15 10 5 5
赞成人数 4 6 9 6 3 4
(Ⅰ)完成被调查人员的频率分布直方图;
(Ⅱ)若从年龄在[55,65),[65,75)的被调查者中各随机选取1人进行进行追踪调查,求两人中至少有一人赞成“车辆限行”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-(2m-3)x+m2-1,m∈R,若x∈〔-2,4〕
(1)求f(x)的最小值g(min);
(2)求f(x)的最大值g(max).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(x+1)+
ax
x+1
(a∈R)
(Ⅰ)当a=2时,求函数y=f(x)的图象在x=0处的切线方程;
(Ⅱ)判断函数f(x)的单调性;
(Ⅲ)求证:ln(1+
1
n
1
n
-
1
n2
(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)解不等式:|x-1|+|2x+5|<8;
(2)已知a,b,c>0,且a+b+c=1,证明:
a2
b+3c
+
b2
c+3a
+
c2
a+3b
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=asinxcosx-cos2x+sin2x,a∈R,且f(-
π
3
)=f(0).
(1)求实数a的值;
(2)将f(x)化成y=Asin(wx+φ)的形式,求f(x)的单调增区间;
(3)将函数f(x)图象上所有点纵坐标不变,横坐标变为原来的两倍,再向左平移
π
6
个单位,所得图象对应的函数为g(x),当x∈[
π
6
2
3
π
]时,求g(x)的值域.

查看答案和解析>>

同步练习册答案