精英家教网 > 高中数学 > 题目详情
已知函数有如下性质:如果常数a>0,那么该函数在上是减函数,在上是增函数.
(1)如果函数在(0,4]上是减函数,在[4,+∞)上是增函数,求b的值.
(2)设常数c∈[1,4],求函数的最大值和最小值;
(3)当n是正整数时,研究函数的单调性,并说明理由.
【答案】分析:(1)根据题设条件知=4,由此可知b=4.
(2)由∈[1,2],知当x=时,函数f(x)=x+取得最小值2.再由c的取值判断函数的最大值和最小值.
(3)设0<x1<x2,g(x2)-g(x1)=.由此入手进行单调性的讨论.
解答:解:(1)由已知得=4,
∴b=4.
(2)∵c∈[1,4],
∈[1,2],
于是,当x=时,函数f(x)=x+取得最小值2
f(1)-f(2)=
当1≤c≤2时,函数f(x)的最大值是f(2)=2+
当2≤c≤4时,函数f(x)的最大值是f(1)=1+c.
(3)设0<x1<x2,g(x2)-g(x1
=
<x1<x2时,g(x2)>g(x1),函数g(x)在[,+∞)上是增函数;
当0<x1<x2时,g(x2)>g(x1),函数g(x)在(0,]上是减函数.
当n是奇数时,g(x)是奇函数,
函数g(x)在(-∞,-]上是增函数,在[-,0)上是减函数.
当n是偶数时,g(x)是偶函数,
函数g(x)在(-∞,-)上是减函数,在[-,0]上是增函数.
点评:本题考查函数的性质和应用,解题要认真审题,仔细求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题16分)已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数。

(1)如果函数上是减函数,在上是增函数,求的值。

(2)设常数,求函数的最大值和最小值;

(3)当是正整数时,研究函数的单调性,并说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题16分)已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数。

(1)如果函数上是减函数,在上是增函数,求的值。

(2)设常数,求函数的最大值和最小值;

(3)当是正整数时,研究函数的单调性,并说明理由  

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数有如下性质:如果常数,那么该函数在(0,)上减函数,在是增函数。

(1)如果函数的值域为,求的值;

(2)研究函数(常数)在定义域的单调性,并说明理由;

(3)对函数(常数)作出推广,使它们都是你所推广的函数的特例。研究推广后的函数的单调性(只须写出结论,不必证明),并求函数

(n是正整数)在区间[,2]上的最大值和最小值(可利用你的研究结论)。

查看答案和解析>>

科目:高中数学 来源:庆安三中2010——2011学年度高二下学期期末考试数学(文) 题型:解答题

(12分)已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数。
(1)如果函数上是减函数,在上是增函数,求的值。
(2)设常数,求函数的最大值和最小值;

查看答案和解析>>

科目:高中数学 来源:2010年浙江省高一上学期期中考试数学试卷 题型:解答题

(本题12分)已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数;

(1)如果函数上是减函数,在上是增函数,求的值;

(2)当时,试用函数单调性的定义证明函数f(x)在上是减函数。

(3)设常数,求函数的最大值和最小值;

 

查看答案和解析>>

同步练习册答案