精英家教网 > 高中数学 > 题目详情
20.“斐波那契数列“是数学史上一个著名数列,在斐波那契数列{an}中,a1=1,a2=1,an+2=an+1+an(n∈N*)则a7=13;若a2018=m,则数列{an}的前2016项和是m-1(用△>0表示).

分析 ①由a1=1,a2=1,an+2=an+1+an(n∈N*),a3=1+1=2,同理可得:a4,a5,a6,a7
②由于a1=1,a2=1,an+an+1=an+2(n∈N*),可得a1+a2=a3,a2+a3=a4,a3+a4=a5,…,a2016+a2017=a2018.以上累加求和即可得出.

解答 解:①∵a1=1,a2=1,an+2=an+1+an(n∈N*),∴a3=1+1=2,同理可得:a4=3,a5=5,a6=8,则a7=13.
②∵a1=1,a2=1,an+an+1=an+2(n∈N*),
∴a1+a2=a3
a2+a3=a4
a3+a4=a5
…,
a2015+a2016=a2017
a2016+a2017=a2018
以上累加得,
a1+a2+a2+a3+a3+a4+…+2a2016+a2017=a3+a4+…+a2018
∴a1+a2+a3+a4+…+a2016=a2018-a2=m-1,
故答案分别为:13;m-1.

点评 本题考查了递推关系、“累加求和”方法、“斐波那契数列”的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=sinx+cosx,x∈R.
(Ⅰ)求f($\frac{π}{2}$)的值;
(Ⅱ)求函数f(x)的最小正周期;
(Ⅲ)求函数g(x)=f(x+$\frac{π}{4}$)+f(x+$\frac{3π}{4}$)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知圆C1:(x+2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,A,B分别是圆C1和圆C2上的动点,点P是y轴上的动点,则|PB|-|PA|的最大值为(  )
A.$\sqrt{2}$+4B.5$\sqrt{2}-4$C.$\sqrt{2}$D.$\sqrt{26}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知△ABC中,角A、B、C所对的边分别为a,b,c,若△ABC的面积是$\frac{1}{2}$c2,则$\frac{{a}^{2}+{b}^{2}+{c}^{2}}{ab}$的最大值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四棱锥P-ABCD中,PA⊥底面正方形ABCD,E为侧棱PD的中点,F为AB的中点,PA=AB=2.
(Ⅰ)求四棱锥P-ABCD体积;
(Ⅱ)证明:AE∥平面PFC;
(Ⅲ)证明:平面PFC⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知$\overrightarrow{a}$,$\overrightarrow{b}$是任意的两个向量,则下列关系式中不恒成立的是(  )
A.|$\overrightarrow{a}$|+|$\overrightarrow{b}$|≥|$\overrightarrow{a}$-$\overrightarrow{b}$|B.|$\overrightarrow{a}$•$\overrightarrow{b}$|≤|$\overrightarrow{a}$|•|$\overrightarrow{b}$|
C.($\overrightarrow{a}$-$\overrightarrow{b}$)2=$\overrightarrow{a}$-2$\overrightarrow{a}$•$\overrightarrow{b}$+$\overrightarrow{b}$2D.($\overrightarrow{a}$-$\overrightarrow{b}$)3=$\overrightarrow{a}$3-3$\overrightarrow{a}$2•$\overrightarrow{b}$+3$\overrightarrow{a}$•$\overrightarrow{b}$2-$\overrightarrow{b}$3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,角A,B,C的对边分别为a,b,c,已知a=2,bcosC-ccosB=4,$\frac{π}{4}$≤C≤$\frac{π}{3}$,则tanA的最大值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知集合A={x||x-2|<a},B={x|x2-2x-3<0},若B⊆A,则实数a的取值范围是a≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A,B,C的对边分别为a,b,c,已知a-c=$\frac{\sqrt{3}}{3}$bsinA-bcosA
(Ⅰ)求B;
(Ⅱ)若b=$\sqrt{3}$,△ABC的面积S=$\frac{\sqrt{3}}{2}$,求△ABC的周长.

查看答案和解析>>

同步练习册答案