精英家教网 > 高中数学 > 题目详情
10.在△ABC中,角A,B,C的对边分别为a,b,c,已知a-c=$\frac{\sqrt{3}}{3}$bsinA-bcosA
(Ⅰ)求B;
(Ⅱ)若b=$\sqrt{3}$,△ABC的面积S=$\frac{\sqrt{3}}{2}$,求△ABC的周长.

分析 (I)利用正弦定理将边化弦,利用三角函数的恒等变换化简得出B的三角函数值;
(II)根据面积公式得出ac,利用余弦定理解得a+c,从而得出三角形的周长.

解答 解:(I)∵a-c=$\frac{\sqrt{3}}{3}$bsinA-bcosA,∴sinA-sinC=$\frac{\sqrt{3}}{3}$sinBsinA-sinBcosA,
∵sinC=sin(A+B)=sinAcosB+cosAsinB,
∴sinA-sinAcosB=$\frac{\sqrt{3}}{3}$sinBsinA,
∵sinA≠0,
∴1-cosB=$\frac{\sqrt{3}}{3}$sinB.即cosB=1-$\frac{\sqrt{3}}{3}$sinB.
又sin2B+cos2B=1,
∴sinB=$\frac{\sqrt{3}}{2}$,cosB=$\frac{1}{2}$.
∴B=$\frac{π}{3}$.
(II)∵S△ABC=$\frac{1}{2}acsinB$=$\frac{\sqrt{3}}{4}ac$=$\frac{\sqrt{3}}{2}$,
∴ac=2.
由余弦定理得cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{(a+c)^{2}-2ac-{b}^{2}}{2ac}$=$\frac{(a+c)^{2}-7}{4}=\frac{1}{2}$,
∴a+c=3.
∴a+b+c=3+$\sqrt{3}$.

点评 本题考查了正弦定理,余弦定理,三角形的面积公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.“斐波那契数列“是数学史上一个著名数列,在斐波那契数列{an}中,a1=1,a2=1,an+2=an+1+an(n∈N*)则a7=13;若a2018=m,则数列{an}的前2016项和是m-1(用△>0表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=sinxcosx+$\sqrt{3}{cos^2}$x
(1)若0≤x≤$\frac{π}{2}$,求函数f(x)的值域;
(2)设△ABC的三个内角A,B,C所对的边分别为a,b,c,若A为锐角且f(A)=$\frac{{\sqrt{3}}}{2}$,b=2,c=3,求cos(A-B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.计算:A${\;}_{7}^{2}$•C${\;}_{9}^{0}$+lg0.01-9${\;}^{\frac{1}{2}}$-$\frac{lo{g}_{2}3}{lo{g}_{4}9}$-cos$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设直线x=t与两数f(x)=x2+1,g(x)=x+lnx的图象分别交于P,Q两点,则|PQ|的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.等轴双曲线过点P(-2,4),则双曲线的标准方程为y2-x2=12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图所示,双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,M,N为双曲线C上两点,且kMN=0,若$\overrightarrow{{F}_{1}Q}$=$\overrightarrow{QN}$(Q在双曲线C上),且|MN|=$\frac{{|F}_{1}{F}_{2}|}{4}$,则双曲线C的渐近线方程为(  )
A.y=$±\sqrt{2}$xB.y=$±\sqrt{3}$xC.y=±2xD.y=$±\sqrt{5}$x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.满足{1,2,3}⊆M?{1,2,3,4,5}的集合M有3个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=b•ax(其中a,b为常数,且a>0,a≠1)的图象经过点A(1,6),B(3,24)
(1)求f(x)的表达式;
(2)若不等式ax+bx-m(ab)x≥0在x∈(-∞,1]时恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案