精英家教网 > 高中数学 > 题目详情
6.已知函数$f(x)=x+\frac{1}{x}$.
(1)用定义证明f(x)在[1,+∞)上是增函数;
(2)求f(x)在[1,4]上的最大值及最小值.

分析 (1)任取1≤x1<x2,我们构造出f(x2)-f(x1)的表达式,根据实数的性质,我们易得出f(x2)-f(x1)的符号,进而根据函数单调性的定义,得到答案.
(2)利用函数的单调性,即可求f(x)在[1,4]上的最大值及最小值.

解答 解:(1)设1≤x1<x2,f(x2)-f(x1)=${x}_{2}+\frac{1}{{x}_{2}}$-x1-$\frac{1}{{x}_{1}}$=$\frac{({x}_{2}-{x}_{1})({x}_{2}{x}_{1}-1)}{{x}_{2}{x}_{1}}$,
因为1≤x1<x2,所以x2-x1>0,x2x1-1>0,x2x1>0,
所以f(x2)-f(x1)>0,即f(x2)>f(x1
故函数f(x)在区间[1,+∞)上是增函数;
(2)由(1),可得f(x)在[1,4]上的最大值是f(4)=$\frac{17}{4}$,最小值f(1)=2.

点评 本题考查的知识点是函数单调性的判断与证明,其中作差法(定义法)证明函数的单调性是我们中学阶段证明函数单调性最重要的方法,一定要掌握其解的格式和步骤.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知方程$\frac{{x}^{2}}{2+m}$-$\frac{{y}^{2}}{m+1}$=1表示椭圆,则实数m的取值范围是(  )
A.(-∞,-1)B.(-2,+∞)C.(-∞,-$\frac{3}{2}$)∪(-1,+∞)D.(-2,-$\frac{3}{2}$)∪(-$\frac{3}{2}$,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,角A,B,C的对边分别为a,b,c,已知b(1+cosC)=c(2-cosB).
(Ⅰ)求证:a,c,b成等差数列;
(Ⅱ)若C=$\frac{π}{3}$,△ABC的面积为4$\sqrt{3}$,求c.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知z1=1+i,z2=1-i,(i是虚数单位),则$\frac{{z}_{1}}{{z}_{2}}$+$\frac{{z}_{2}}{{z}_{1}}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=sinωx+$\sqrt{3}$cosωx(ω>0)在区间(0,π)上存在3个不同的x0,使得f(x0)=1,则ω的取值范围为(  )
A.($\frac{5}{2}$,$\frac{23}{6}$]B.($\frac{5}{2}$,$\frac{23}{6}$)C.($\frac{3}{2}$,$\frac{19}{6}$)D.($\frac{3}{2}$,$\frac{19}{6}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知公差为2的等差数列{an}及公比为2的等比数列{bn}满足a1+b1>0,a2+b2<0,设m=a4+b3,则实数m的取值范围是(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知△ABC的三边|AB|=$\sqrt{13}$,|BC|=4,|AC|=1,动点M满足$\overrightarrow{CM}=λ\overrightarrow{CA}+μ\overrightarrow{CB}$,且λμ=$\frac{1}{4}$.
(1)求cos∠ACB;
(2)求|$\overrightarrow{CM}$|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.三棱柱ABC-A1B1C1的底面ABC是等边三角形,BC的中点为O,A1O⊥底面ABC,AA1与底面ABC所成的角为$\frac{π}{3}$,点D在棱AA1上,且AD=$\sqrt{3}$,AB=4.
(1)求证:OD⊥平面BB1C1C;
(2)求二面角B-B1C-A1的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设△ABC的内角A,B,C所对边的长分别为a,b,c.若sinA=2 sinB,$c=4,C=\frac{π}{3}$,则△ABC的面积为(  )
A.$\frac{{8\sqrt{3}}}{3}$B.$\frac{16}{3}$C.$\frac{{16\sqrt{3}}}{3}$D.$\frac{8}{3}$

查看答案和解析>>

同步练习册答案