精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=sinωx+$\sqrt{3}$cosωx(ω>0)在区间(0,π)上存在3个不同的x0,使得f(x0)=1,则ω的取值范围为(  )
A.($\frac{5}{2}$,$\frac{23}{6}$]B.($\frac{5}{2}$,$\frac{23}{6}$)C.($\frac{3}{2}$,$\frac{19}{6}$)D.($\frac{3}{2}$,$\frac{19}{6}$]

分析 利用辅助角公式化简,根据x∈(0,π),求出内层函数的范围,在区间(0,π)上存在3个不同的x0,使得f(x0)=1,化简建立关系.即可求解ω的取值范围.

解答 解:函数f(x)=sinωx+$\sqrt{3}$cosωx(ω>0)
化简可得f(x)=2sin(ωx$+\frac{π}{3}$)
∵x∈(0,π),
∴ωx$+\frac{π}{3}$∈($\frac{π}{3}$,$\frac{π}{3}+ωπ$)
要使x0∈(0,π)有3个不同的x0,使得sin(ωx0$+\frac{π}{3}$)=$\frac{1}{2}$成立.
需满足$2π+\frac{π}{6}<\frac{π}{3}+ωπ≤3π-\frac{π}{6}$,
解得:ω∈($\frac{5}{2}$,$\frac{23}{6}$]
故选A.

点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.中新网2016年12月19日电  根据预报,今天开始雾霾范围将进一步扩大,19日夜间至20日,雾霾最严重的时段部分地区PM2.5浓度峰值会超过500微克/立方米,而此轮雾霾最严重的时候,将有包括京津翼、山西、陕西、河南等11个省市在内的地区被雾霾笼罩,PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标,某地区在2016年12月19日至28日每天的PM2.5监测数据的茎叶图如图所示:
(1)求出这些数据的中位数与极差;
(2)从所给的空气质量不超标的7天的数据中任意抽取2天的数据,求这2天中恰好有1天空气质量为一级,另一天空气质量为二级的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),过其左焦点F作x轴的垂线,交双曲线于A,B两点,若双曲线的右顶点在以AB为直径的圆外,则双曲线离心率的取值范围是(  )
A.(1,$\frac{3}{2}$)B.(1,2)C.($\frac{3}{2}$,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=\frac{x+1}{e^x}$,A(x1,m),B(x2,m)是曲线y=f(x)上两个不同的点.
(Ⅰ)求f(x)的单调区间,并写出实数m的取值范围;
(Ⅱ)证明:x1+x2>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若至少存在一个x≥0,使得关于x的不等式x2≤4-|2x+m|成立,则实数m的取值范围是(  )
A.[-4,5]B.[-5,5]C.[4,5]D.[-5,4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=x+\frac{1}{x}$.
(1)用定义证明f(x)在[1,+∞)上是增函数;
(2)求f(x)在[1,4]上的最大值及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则f(0)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.一个样本a,3,5,7的平均数是b,且a,b分别是数列{2n-2}(n∈N*)的第2项和第4项,则这个样本的方差是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=\frac{a}{e^x}+lnx$.(a∈R)
(Ⅰ)若函数在区间$[\frac{1}{e},\;e]$上单调递减,求实数a的取值范围;
(Ⅱ)试讨论函数f(x)在区间(0,+∞)内极值点的个数.

查看答案和解析>>

同步练习册答案