已知A,B,C是椭圆W:
+y2=1上的三个点,O是坐标原点.
(1)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积;
(2)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.
(1)
(2) 不可能,理由见解析
【解析】解:(1)椭圆W:
+y2=1的右顶点B的坐标为(2,0).
因为四边形OABC为菱形,所以AC与OB相互垂直平分.
所以可设A(1,m),
代入椭圆方程得
+m2=1,即m=±
.
所以菱形OABC的面积是
|OB|·|AC|=
×2×2|m|=
.
(2)四边形OABC不可能为菱形.理由如下:
假设四边形OABC为菱形.
因为点B不是W的顶点,且直线AC不过原点,
所以可设AC的方程为y=kx+m(k≠0,m≠0).
由![]()
消y并整理得(1+4k2)x2+8kmx+4m2-4=0.
设A(x1,y1),C(x2,y2),则
=-
,
=k·
+m=
.
所以AC的中点为M
.
因为M为AC和OB的交点,
所以直线OB的斜率为-
.
因为k·
≠-1,所以AC与OB不垂直.
所以四边形OABC不是菱形,与假设矛盾.
所以当点B不是W的顶点时,四边形OABC不可能是菱形.
科目:高中数学 来源: 题型:
| x2 |
| a2 |
| y2 |
| b2 |
| 3 |
| AC |
| BC |
| BC |
| AC |
| DP |
| DQ |
查看答案和解析>>
科目:高中数学 来源: 题型:
| x2 |
| a2 |
| y2 |
| b2 |
| 3 |
| PQ |
| AB |
查看答案和解析>>
科目:高中数学 来源: 题型:
| x2 |
| a2 |
| y2 |
| b2 |
| 3 |
| AC |
| BC |
| BC |
| AC |
| DP |
| DQ |
查看答案和解析>>
科目:高中数学 来源: 题型:
| x2 |
| a2 |
| y2 |
| b2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| x2 | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com