精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},(x≤0)}\\{f(x-4),(x>0)}\end{array}\right.$,则f(2016)=1.

分析 利用分段函数的性质求解.

解答 解:∵f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},(x≤0)}\\{f(x-4),(x>0)}\end{array}\right.$,
∴f(2016)=f(504×4)=f(0)=($\frac{1}{2}$)0=1.
故答案为:1.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意分段函数的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知集合A={x|0<log4x<1},B=$\left\{{x|y=\sqrt{1-{2^{x-3}}}}\right\}$,则A∩B=(  )
A.(0,1)B.(0,3]C.(1,3)D.(1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=-2sin2x+5sinx-2,求函数的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.要得到函数y=cos(3x-$\frac{π}{4}$)的图象,只需将函数y=sin3x的图象(  )
A.向右平移$\frac{π}{12}$个单位B.向左平移$\frac{π}{12}$个单位
C.向右平移$\frac{π}{4}$个单位D.向左平移$\frac{π}{4}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.计算:lg25-2lg$\frac{1}{2}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知向量$\overrightarrow{α}$,$\overrightarrow{β}$是平面内两个互相垂直垂直的单位向量,若(5$\overrightarrow{α}$-2$\overrightarrow{γ}$)•(12$\overrightarrow{β}$-2$\overrightarrow{γ}$)=0,则|$\overrightarrow{γ}$|的最大值是$\frac{13}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知等差数列{an}的前n项和Sn满足:S5=30,S10=110,数列{bn}的前n项和Tn满足:b1=1,bn+1-2Tn=1.
(1)求Sn与bn
(2)比较Snbn与2Tnan的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某中学高中一年级、二年级、三年级的学生人数之比为5:4:3,现用分层抽样的方法抽取一个容量为240的样本,则所抽取的高中二年级学生的人数是(  )
A.120B.100C.90D.80

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在等差数列{an}中,若a4+a6+a8+a10+a12=120,则2a10-a12的值为(  )
A.6B.12C.24D.60

查看答案和解析>>

同步练习册答案