精英家教网 > 高中数学 > 题目详情

【题目】设函数的图象上存在两点,使得是以为直角顶点的直角三角形(其中为坐标原点),且斜边的中点恰好在轴上,则实数的取值范围是______

【答案】

【解析】

曲线上存在两点满足题设要求,则点只能在轴两侧.设,则,运用向量垂直的条件:数量积为0,构造函数,运用导数判断单调性,求得最值,即可得到的范围.

解:假设曲线上存在两点满足题设要求,

则点只能在轴两侧.

不妨设

是以为直角顶点的直角三角形,

若方程有解,存在满足题设要求的两点

若方程无解,不存在满足题设要求的两点

,则代入式得:

,而此方程无解,因此,此时

代入式得:

上单调递增,

的取值范围是

对于,方程总有解,即方程总有解.

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知.

1)若,求处的切线与两坐标轴围成的三角形的面积;

2)若上的最大值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,对任意,都有.

讨论的单调性;

存在三个不同的零点时,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若函数上存在两个极值点.

(Ⅰ)求实数的取值范围;

(Ⅱ)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】年初,湖北出现由新型冠状病毒引发的肺炎.为防止病毒蔓延,各级政府相继启动重大突发公共卫生事件一级响应,全国人心抗击疫情.下图表示日至日我国新型冠状病毒肺炎单日新增治愈和新增确诊病例数,则下列中表述错误的是(

A.月下旬新增确诊人数呈波动下降趋势

B.随着全国医疗救治力度逐渐加大,月下旬单日治愈人数超过确诊人数

C.日至日新增确诊人数波动最大

D.我国新型冠状病毒肺炎累计确诊人数在日左右达到峰值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面,点分别为的中点.

(Ⅰ)求证:平面

(Ⅱ)求二面角的正弦值;

(Ⅲ)若为线段上的点,且直线与平面所成的角为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=ax3axxlnx.其中aR

(Ⅰ)若,证明:fx)≥0

(Ⅱ)若xe1x1fx)在x∈(1+∞)上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:若数列满足所有的项均由1构成且其中个,1,则称为“数列”.

1为“数列”中的任意三项,则使得的取法有多少种?

2为“数列”中的任意三项,则存在多少正整数对使得,且的概率为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国在北宋1084年第一次印刷出版了《算经十书》,即贾宪的《黄帝九章算法细草》,刘益的《议古根源》,秦九韶的《数书九章》,李冶的《测圆海镜》和《益古演段》,杨辉的《详解九章算法》、《日用算法》和《杨辉算法》,朱世杰的《算学启蒙》和《四元玉鉴》.这些书中涉及的很多方面都达到古代数学的高峰,其中一些算法如开立方和开四次方也是当时世界数学的高峰.某图书馆中正好有这十本书现在小明同学从这十本书中任借两本阅读,那么他取到的书的书名中有字的概率为(

A.B.C.D.

查看答案和解析>>

同步练习册答案