精英家教网 > 高中数学 > 题目详情

【题目】已知函数,若函数上存在两个极值点.

(Ⅰ)求实数的取值范围;

(Ⅱ)证明:.

【答案】(Ⅰ)(Ⅱ)见解析

【解析】

(Ⅰ)求出,分析的符号,的根的个数满足的条件.

(Ⅱ)不妨设,令,将目标不等式的参数减少,用分析的方法最后证明:,构造函数证明即可.

(Ⅰ)函数的定义域为

因为

所以.

时,

所以函数上单调递增.

上单调递增,

上至多一个零点,

所以上至多一个极值点,不满足条件.

时,由,得(负根舍去),

时,

时,

所以函数)上单调递减;

上单调递增.

所以

要使函数上存在两个极值点

则函数有两个零点,即有两个零点

首先,解得.

因为,且

下面证明:.

.

因为,所以.

所以上单调递减,

所以.

所以实数的取值范围为.

(Ⅱ)因为是函数的两个极值点,

所以是函数的两个零点

是函数的两个零点,

不妨设,令,则.

所以.

所以,即.

要证,需证.

即证,即证.

因为,所以即证

.

所以上单调递减,

所以.

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知四棱锥的底面ABCD是边长为2的正方形,且.若四棱锥P-ABCD的五个顶点在以4为半径的同一球面上,当PA最长时,则______________;四棱锥P-ABCD的体积为______________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求直线与曲线相切时,切点的坐标;

2)当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求在点处的切线方程;

2)若方程有两个实数根,且,证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 平面 为线段上的点.

(1)证明: 平面

(2)若的中点,求与平面所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《山东省高考改革试点方案》规定:从2017年秋季高中入学的新生开始,不分文理科;2020年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成.将每门选考科目的考生原始成绩从高到低划分为A、B+、B、C+、C、D+、D、E共8个等级.参照正态分布原则,确定各等级人数所占比例分别为3%、7%、16%、24%、24%、16%、7%、3%.选考科目成绩计入考生总成绩时,将A至E等级内的考生原始成绩,依照等比例转换法则,分别转换到[91,100]、[81,90]、[71,80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八个分数区间,得到考生的等级成绩.

某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布N(60,169).

(Ⅰ)求物理原始成绩在区间(47,86)的人数;

(Ⅱ)按高考改革方案,若从全省考生中随机抽取3人,记X表示这3人中等级成绩在区间[61,80]的人数,求X的分布列和数学期望.

(附:若随机变量,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的图象上存在两点,使得是以为直角顶点的直角三角形(其中为坐标原点),且斜边的中点恰好在轴上,则实数的取值范围是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在贯彻中共中央、国务院关于精准扶贫政策的过程中,某单位在某市定点帮扶甲、乙两村各50户贫困户为了做到精准帮扶,工作组对这100户村民的年收入情况、劳动能力情况、子女受教育情况、危旧房情况、患病情况等进行调查,并把调查结果转化为各户的贫困指标x,将指标x按照分成五组,得到如图所示的频率分布直方图.

规定若,则认定该户为绝对贫困户,否则认定该户为相对贫困户,且当时,认定该户为低收入户;当时,认定该户为亟待帮助户,已知此次调查中甲村的绝对贫困户占甲村贫困户的24%.

1)完成下面的列联表,并判断是否有90%的把握认为绝对贫困户数与村落有关;

甲村

乙村

总计

绝对贫困户

相对贫困户

总计

2)若两村低收入户中乙村低收入户占比为,两村亟待帮助户中乙村亟待帮助户占比为,且乙村贫困指标在上的户数成等差数列,试估计乙村贫困指标x的平均值.

附:,其中.

0.15

0.10

0.05

0.025

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了20161月至201812月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.

根据该折线图,判断下列结论:

1)月接待游客量逐月增加;

2)年接待游客量逐年增加;

3)各年的月接待游客量高峰期大致在78月;

4)各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳.

其中正确结论的个数为(

A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案