【题目】已知函数,若函数在上存在两个极值点.
(Ⅰ)求实数的取值范围;
(Ⅱ)证明:.
【答案】(Ⅰ)(Ⅱ)见解析
【解析】
(Ⅰ)求出,分析的符号,的根的个数满足的条件.
(Ⅱ)不妨设,令,,将目标不等式的参数减少,用分析的方法最后证明:,构造函数证明即可.
(Ⅰ)函数的定义域为,
因为,
令
所以.
当时,,
所以函数在上单调递增.
即在上单调递增,
在上至多一个零点,
所以在上至多一个极值点,不满足条件.
当时,由,得(负根舍去),
当时,,
当时,,
所以函数在)上单调递减;
在上单调递增.
所以,
要使函数在上存在两个极值点
则函数有两个零点,即有两个零点
首先,解得.
因为,且,
下面证明:.
设,
则.
因为,所以.
所以在上单调递减,
所以.
所以实数的取值范围为.
(Ⅱ)因为,是函数的两个极值点,
所以,是函数的两个零点
即,是函数的两个零点,
不妨设,令,则.
所以即.
所以,即,,.
要证,需证.
即证,即证.
因为,所以即证.
设,
则.
所以在上单调递减,
所以.
所以.
科目:高中数学 来源: 题型:
【题目】已知四棱锥的底面ABCD是边长为2的正方形,且.若四棱锥P-ABCD的五个顶点在以4为半径的同一球面上,当PA最长时,则______________;四棱锥P-ABCD的体积为______________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《山东省高考改革试点方案》规定:从2017年秋季高中入学的新生开始,不分文理科;2020年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成.将每门选考科目的考生原始成绩从高到低划分为A、B+、B、C+、C、D+、D、E共8个等级.参照正态分布原则,确定各等级人数所占比例分别为3%、7%、16%、24%、24%、16%、7%、3%.选考科目成绩计入考生总成绩时,将A至E等级内的考生原始成绩,依照等比例转换法则,分别转换到[91,100]、[81,90]、[71,80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八个分数区间,得到考生的等级成绩.
某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布N(60,169).
(Ⅰ)求物理原始成绩在区间(47,86)的人数;
(Ⅱ)按高考改革方案,若从全省考生中随机抽取3人,记X表示这3人中等级成绩在区间[61,80]的人数,求X的分布列和数学期望.
(附:若随机变量,则,,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在贯彻中共中央、国务院关于精准扶贫政策的过程中,某单位在某市定点帮扶甲、乙两村各50户贫困户为了做到精准帮扶,工作组对这100户村民的年收入情况、劳动能力情况、子女受教育情况、危旧房情况、患病情况等进行调查,并把调查结果转化为各户的贫困指标x,将指标x按照分成五组,得到如图所示的频率分布直方图.
规定若,则认定该户为“绝对贫困户”,否则认定该户为“相对贫困户”,且当时,认定该户为“低收入户”;当时,认定该户为“亟待帮助户”,已知此次调查中甲村的“绝对贫困户”占甲村贫困户的24%.
(1)完成下面的列联表,并判断是否有90%的把握认为绝对贫困户数与村落有关;
甲村 | 乙村 | 总计 | |
绝对贫困户 | |||
相对贫困户 | |||
总计 |
(2)若两村“低收入户”中乙村“低收入户”占比为,两村“亟待帮助户”中乙村“亟待帮助户”占比为,且乙村贫困指标在上的户数成等差数列,试估计乙村贫困指标x的平均值.
附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | |
2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2016年1月至2018年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.
根据该折线图,判断下列结论:
(1)月接待游客量逐月增加;
(2)年接待游客量逐年增加;
(3)各年的月接待游客量高峰期大致在7,8月;
(4)各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳.
其中正确结论的个数为( )
A.1B.2C.3D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com