精英家教网 > 高中数学 > 题目详情

【题目】(2015·陕西)△ABC的内角A,B,C所对的边分别为a,b,c.向量平行.
(1)求A。
(2)若a=, b=2求△ABC的面积。

【答案】
(1)


(2)


【解析】(I)因为,所以asinB-bcosA=0, 由正弦定理,得sinAsinB-sinBcosA=0,又sinB≠0,从而tanA=
由于0<A<, 所以A=.
(II)解法一:由余弦定理,得a2=b2+c2-2bccosA,而a=, b=2, A=,得7=4+c2-2c,即c2-2c-3=0, 因为c>0,所以c=3,故△ABC面积为bcsinA=.
解法二:由正弦定理,得, 从而sinB=,又由a>b知A>B,所以cosB=,故sinC=sin(A+B)=sin(B+)= sinBcos+cosBsin=,所以△ABC面积为absinC=.
【考点精析】利用平面向量的基本定理及其意义和空间向量的加减法对题目进行判断即可得到答案,需要熟知如果是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数,使;求两个向量和的运算称为向量的加法,它遵循平行四边形法则;求两个向量差的运算称为向量的减法,它遵循三角形法则.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)
被选中且未被选中的概率.

参加书法社团

未参加书法社团

参加演讲社团

8

5

未参加演讲社团

2

30

(1)从该班随机选1名同学,求该同学至少参加一个社团的概率;
(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1 , A2 , A3 , A4 , A5 , 3名女同学B1 , B2 , B3 . 现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱台中,分别为的中点.

(1)求证:平面
(2)若平面 求平面与平面所成的角(锐角)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知m,n是两条不同直线,是两个不同平面,则下列命题正确的是
A.若垂直于同一平面,则平行
B.若m,n平行于同一平面,则m与n平行
C.若不平行,则在内不存在与平行的直线
D.若m,n不平行,则m与n不可能垂直于同一平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x2-ax+b,问:(1)讨论函数f(sinx)在( )内的单调性并判断有无极值,有极值时求出极值;(2)记f0(x)= - x + ,求函数| f ( sin x ) - ( sin x )| 在[ . ]上的最大值D,(3)在(2)中,取a0=b0=0,求z= b - 满足D ≤ 1时的最大值
(1)讨论函数f(sinx)在()内的单调性并判断有无极值,有极值时求出极值;
(2)记f0(x)=,求函数上的最大值D,
(3)在(2)中,取a0=b0=0,求z=满足D1时的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·陕西)设fn(x)是等比数列1,x,x2...,xn的各项和,其中x>0,nN, ,n≥2,
(1)证明:函数Fn(x)=fn(x)-2在(,1)内有且仅有一个零点(记为xn),且xn=+xnn+1
(2)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为gn(x),比较fn(x)与gn(x)的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(Ⅰ)求曲线在点处的切线方程;
(Ⅱ)求证:当时,
(Ⅲ)设实数k使得恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆 =1(a>b>0)的左焦点为F,离心率为 ,过点F且与x轴垂直的直线被椭圆截得的线段长为
(1)求椭圆的方程;
(2)设A,B分别为椭圆的左,右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若 =8,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式|x+3|﹣2x﹣1<0的解集为(x0 , +∞) (Ⅰ)求x0的值;
(Ⅱ)若函数f(x)=|x﹣m|+|x+ |﹣x0(m>0)有零点,求实数m的值.

查看答案和解析>>

同步练习册答案