精英家教网 > 高中数学 > 题目详情

【题目】为了了解某省各景点在大众中的熟知度,随机对15~65岁的人群抽样了人,回答问题“某省有哪几个著名的旅游景点?”统计结果如下图表

组号

分组

回答正确

的人数

回答正确的人数

占本组的频率

第1组

[15,25)

0.5

第2组

[25,35)

18

第3组

[35,45)

0.9

第4组

[45,55)

9

0.36

第5组

[55,65]

3

(1)分别求出的值;

(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?

(3)在(2)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.

【答案】(1) (2) 22人,第33人,第41人;(3)

【解析】试题分析:(1)观察表格,从第, 组频数为,频率为可知,所以第四组人,而由频率分布直方图可知,第四组的频率为,所以总人数人,根据频率分布直方图可知,第组频率分别为,所以这四组的人数分别为人,则可以分别计算得到;(2)根据第(1)问可知,第组回答正确人数之比为,所以若按分层抽样方法从这三组中抽取人,应从中分别抽出人, 人, 人;(3)设第组两人为,第组三人为,第组一人为,则从人中任意抽取人工包含个基本事件,其中恰好没有第组人共包含个基本事件,所以根据古典概型概率公式有.

试题解析:(1)由频率表中第4组数据可知,第4组总人数为

再结合频率分布直方图可知,

2)因为第234组回答正确的人数共有54人,

所以利用分层抽样在54人中抽取6人,每组分别抽取的人数为:

2组:人;第3组:人;第4组:

3)设第22人为:A1A2;第33人为:B1B2B3;第41人为:C1

则从6人中随机抽取2人的所有可能的结果为:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,C1),(A2,B1),(A2, B2),(A2,B3),(A2,C1),(B1,B2),(B1,B3),(B1,C1),(B2,B3),(B2,C1),(B3,C1

15个基本事件

其中恰好没有第3组人共3个基本事件(A1,A2),(A2,C1),(A1,C1),

所抽取的人中恰好没有第3组人的概率是:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙两人各进行次射击,甲每次击中目标的概率为,乙每次击中目标的概率

(Ⅰ)记甲击中目标的次数为,求的概率分布及数学期望;

(Ⅱ)求甲恰好比乙多击中目标次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上是增函数,则的取值范围是(  )

A. B. C. D.

【答案】C

【解析】

若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则x2﹣ax+3a>0且f(2)0,根据二次函数的单调性,我们可得到关于a的不等式,解不等式即可得到a的取值范围.

若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,

则当x∈[2,+∞)时,

x2﹣ax+3a>0且函数f(x)=x2﹣ax+3a为增函数

,f(2)=4+a>0

解得﹣4<a≤4

故选:C.

【点睛】

本题考查的知识点是复合函数的单调性,二次函数的性质,对数函数的单调区间,其中根据复合函数的单调性,构造关于a的不等式,是解答本题的关键.

型】单选题
束】
10

【题目】圆锥的高和底面半径之比,且圆锥的体积,则圆锥的表面积为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正三棱柱的所有棱长都为中点.

(1)求证:⊥平面

(2)求锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知矩形中, 分别是上的点, 的中点现沿着翻折,使平面平面.

(Ⅰ)的中点,求证:平面.

(Ⅱ)求异面直线所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABCA1B1C1中,DE分别为BCAC的中点,AB=BC

求证:(1A1B1∥平面DEC1

2BEC1E

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列中,.

1)求证:存在的一次函数,使得成公比为2的等比数列;

2)求的通项公式;

3)令,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图椭圆的离心率为 其左顶点在圆.

1)求椭圆的方程;

2)直线与椭圆的另一个交点为,与圆的另一个交点为.是否存在直线,使得若存在,求出直线的斜率;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学调查了某班全部名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)


参加书法社团

未参加书法社团

参加演讲社团



未参加演讲社团



1)从该班随机选名同学,求该同学至少参加上述一个社团的概率;

2)在既参加书法社团又参加演讲社团的名同学中,有5名男同学名女同学现从这名男同学和名女同学中各随机选人,求被选中且未被选中的概率.

查看答案和解析>>

同步练习册答案