【题目】如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.
![]()
求证:(1)A1B1∥平面DEC1;
(2)BE⊥C1E.
【答案】(1)见解析;(2)见解析.
【解析】
(1)由题意结合几何体的空间结构特征和线面平行的判定定理即可证得题中的结论;
(2)由题意首先证得线面垂直,然后结合线面垂直证明线线垂直即可.
(1)因为D,E分别为BC,AC的中点,
![]()
所以ED∥AB.
在直三棱柱ABC-A1B1C1中,AB∥A1B1,
所以A1B1∥ED.
又因为ED平面DEC1,A1B1
平面DEC1,
所以A1B1∥平面DEC1.
(2)因为AB=BC,E为AC的中点,所以BE⊥AC.
因为三棱柱ABC-A1B1C1是直棱柱,所以CC1⊥平面ABC.
又因为BE平面ABC,所以CC1⊥BE.
因为C1C平面A1ACC1,AC平面A1ACC1,C1C∩AC=C,
所以BE⊥平面A1ACC1.
因为C1E平面A1ACC1,所以BE⊥C1E.
科目:高中数学 来源: 题型:
【题目】已知数列
,
,其前
项和
满足
,其中
.
(1)设
,证明:数列
是等差数列;
(2)设
,
为数列
的前
项和,求证:
;
(3)设
(
为非零整数,
),试确定
的值,使得对任意
,都有
成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【选修4-4:坐标系与参数方程】
在平面直角坐标系
中,曲线
的参数方程为:
(
为参数,
),将曲线
经过伸缩变换:
得到曲线
.
(1)以原点为极点,
轴的正半轴为极轴建立坐标系,求
的极坐标方程;
(2)若直线
(
为参数)与
相交于
两点,且
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】正三棱柱
(底面是正三角形,侧棱垂直底面)的各条棱长均相等,
为
的中点.
、
分别是
、
上的动点(含端点),且满足
.当
运动时,下列结论中正确的是______ (填上所有正确命题的序号).
![]()
①平面
平面
;
②三棱锥
的体积为定值;
③
可能为直角三角形;
④平面
与平面
所成的锐二面角范围为
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数
与听课时间
(单位:分钟)之间的关系满足如图所示的图象,当
时,图象是二次函数图象的一部分,其中顶点
,过点
;当
时,图象是线段BC,其中
.根据专家研究,当注意力指数大于62时,学习效果最佳.要使得学生学习效果最佳,则教师安排核心内容的时间段为____________.(写成区间形式)
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
的三边长分别为
,
,
,M是AB边上的点,P是平面ABC外一点.给出下列四个命题:①若
平面ABC,则三棱锥
的四个面都是直角三角形;②若
平面ABC,且M是边AB的中点,则有
;③若
,
平面ABC,则
面积的最小值为
;④若
,P在平面ABC上的射影是
内切圆的圆心,则点P到平面ABC的距离为
.其中正确命题的序号是________.(把你认为正确命题的序号都填上)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com