【题目】如图,三棱柱中,侧面底面,,,且,点,,分别为,,的中点.
(Ⅰ)求证:平面.
(Ⅱ)求证:平面.
(Ⅲ)写出四棱锥的体积.(只写出结论,不需要说明理由)
【答案】(1)见解析;(2)见解析;(3).
【解析】试题分析:(1)由三线合一得A1D⊥AC,再利用面面垂直的性质得出A1D⊥平面ABC;
(2)取B1C1的中点为G,连结FG,GB,则可证明四边形FGBE为平行四边形,从而EF∥BG,于是EF∥平面BB1C1C;
(3)过A1作A1M⊥CC1,垂足为M,则可证明A1M⊥平面BCC1B1.于是A1M为四棱锥A1﹣BB1C1C的高,底面为矩形,代入体积公式计算即可.
(1)证明:∵,
∴是等边三角形,
在等边中,
是边的中点,
∴,
又∵侧面底面,
侧面底面.
侧面,
∴平面.
(2)取中点,连接,,
∵,,分别是,,中点,
∴,
∴四边形是平行四边形,
∴.
又∵平面,
平面,
∴平面,
(3).
科目:高中数学 来源: 题型:
【题目】已知椭圆: ()过点,且离心率为,过点的直线与椭圆交于, 两点.
(Ⅰ)求椭圆的的标准方程;
(Ⅱ)已知为坐标原点,且,求面积的最大值以及此时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的对称轴为坐标轴,离心率为,且一个焦点坐标为.
(1)求椭圆的方程;
(2)设直线与椭圆相交于两点,以线段为邻边作平行四边形,其中点在椭圆上, 为坐标原点,求点到直线的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,直线的参数方程为,其中为参数, ,再以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为,其中, ,直线与曲线交于两点.
(1)求的值;
(2)已知点,且,求直线的普通方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆方程为,双曲线的两条渐近线分别为, ,过椭圆的右焦点作直线,使,又与交于点,设直线与椭圆的两个交点由上至下依次为, .
(1)若与所成的锐角为,且双曲线的焦距为4,求椭圆的方程;
(2)求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com