精英家教网 > 高中数学 > 题目详情
2.如图,在四棱锥P-ABCD中,PD⊥ABCD,底面是菱形,设DA=DP=4,E,F分别为AB,PC的中点.
(1)求空间四面体BCFE的体积V的最大值;
(2)试判定直线AP与直线EF所成角,以及直线AC与平面PDB所成角的大小是否为定值.若是定值,请确定其大小;若不是定值,请说明理由.

分析 (1)EB⊥BC时,空间四面体BCFE的体积V取得最大值;
(2)取PD的中点O,连接OE,OA,则OF平行且等于AE,∠PAO是直线AP与直线EF所成角,大小等于45°-arctan$\frac{1}{2}$;证明AC⊥平面PDB,可得直线AC与平面PDB所成角的大小.

解答 解:(1)由题意,EB⊥BC时,空间四面体BCFE的体积V取得最大值.
此时,V=$\frac{1}{3}×\frac{1}{2}×4×2×2$=$\frac{8}{3}$;
(2)取PD的中点O,连接OE,OA,则OF平行且等于AE,
∴AEFO是平行四边形,
∴EF∥AO,
∴∠PAO是直线AP与直线EF所成角,大小等于45°-arctan$\frac{1}{2}$;
∵ABCD是菱形,
∴AC⊥BD,
∵PD⊥ABCD,
∴PD⊥AC,
∵PD∩BD=D,
∴AC⊥平面PDB,
∴直线AC与平面PDB所成角的大小是90°.

点评 本题考查空间几何体体积的计算,考查空间角,考查学生分析解决问题的能力,正确找出空间角是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ2=$\frac{6}{1+si{n}^{2}θ}$.
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;
(Ⅱ)若直线l:ρsinθ-ρcosθ+1=0与曲线C交于不同的两点M,N,求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某中学高一年级进行学生性别与科目偏向问卷调查,共收回56份问卷,下面是2×2列联表:
男生女生合计
偏理科281644
偏文科4812
合计322456
(1)有多大把握认为科目偏向与性别有关?
(2)如果按分层抽样的方法选取14人,又在这14人中选取2人进行面对面交流,求选中的2人恰好都偏文科的概率;
(3)在(2)的条件下,求一次选出的2人中男生人数X的分布列及期望.
附:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({a+d})({a+c})({b+d})}}$
P(K2>k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图.在四棱锥P-ABCD中,底面ABCD是菱形,PA⊥平面ABCD,点M,N分别为BC,PA的中点,且AB=AC=1.
(I)证明:MN∥平面PCD;
(Ⅱ)设直线PC与平面ABCD所成角为$\frac{π}{3}$,求二面角C-PB一A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,△ABC内接于圆O,AB=AC,AD⊥AB,AD交BC于点E,点F在DA的延长线上,AF=AE.求证:
(1)BF是圆O的切线;
(2)BE2=AE•DF.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=aln(x+1)-x2,在区间(0,1)内任取两个不相等的实数p,q,若不等式$\frac{f(p+1)-f(q+1)}{p-q}$>1恒成立,则实数a的取值范围是(  )
A.[15,+∞)B.[6,+∞)C.(-∞,15]D.(-∞,6]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=|x+1|+m|x-1|.
(Ⅰ)当m=2时,求不等式f(x)<4的解集;
(Ⅱ)若m<0,f(x)≥2m,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在直三棱柱ABA1中,D1C=$\sqrt{2}$a,DD1=DA=DC=a,点E、F分别是BC、DC的中点.
(1)证明:AF⊥ED1
(2)求点E到平面AFD1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在区间[m,n]上有意义的两个函数f(x)与g(x),如果对任意的x∈[m,n],均有|f(x)-g(x)|≤1,则称f(x)与g(x)在[m,n]上是“接近“的,否则称f(x)与g(x)在[m,n]上是“非接近”的.现有f(x)=loga(x+2),g(x)=loga$\frac{1}{x+1}$(其中a>1),试讨论f(x)与g(x)在给区间[0,1]上是否是接近?

查看答案和解析>>

同步练习册答案