精英家教网 > 高中数学 > 题目详情

【题目】已知函数 ,其中a为常数.
(1)若a=1,判断函数f(x)的奇偶性;
(2)若函数 在其定义域上是奇函数,求实数a的值.

【答案】
(1)解:当a=1时, ,其定义域为R.

此时对任意的x∈R,都有

所以函数f(x)在其定义域上为奇函数


(2)解:若函数 在其定义域上是奇函数,则对定义域内的任意x,

有:

整理得:a2e2x﹣1=e2x﹣a2,即:e2x(a2﹣1)=1﹣a2对定义域内的任意x都成立.

所以a2=1

当a=1时, ,定义域为R;

当a=﹣1时, ,定义域为(﹣∞,0)∪(0,+∞).

所以实数a的值为a=1或a=﹣1.


【解析】(1)根据函数奇偶性的定义进行判断.(2)根据函数是奇函数,建立方程关系进行求解即可.
【考点精析】本题主要考查了函数的奇偶性和函数奇偶性的性质的相关知识点,需要掌握偶函数的图象关于y轴对称;奇函数的图象关于原点对称;在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知△ABC的顶点B(-1,-3),边AB上的高CE所在直线的方程为 ,BC边上中线AD所在的直线方程为
(1)求直线AB的方程;
(2)求点C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知双曲线 (a>0,b>0)的左、右焦点分别为F1、F2 , |F1F2|=8,P是双曲线右支上的一点,直线F2P与y轴交于点A,△APF1的内切圆在边PF1上的切点为Q,若|PQ|=2,则该双曲线的离心率为(

A.
B.
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二元一次不等式组 所表示的平面区域为M,若M与圆(x﹣4)2+(y﹣1)2=a(a>0)至少有两个公共点,则实数a的取值范围是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC= AD=1,CD=

(1)求证:平面PQB⊥平面PAD;
(2)若二面角M﹣QB﹣C为30°,求线段PM与线段MC的比值t.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C过点A(1,2)和B(1,10),且与直线x﹣2y﹣1=0相切.
(1)求圆C的方程;
(2)设P为圆C上的任意一点,定点Q(﹣3,﹣6),当点P在圆C上运动时,求线段PQ中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】x∈R,则f(x)与g(x)表示同一函数的是( )
A.f(x)=x2
B.f(x)=1,g(x)=(x﹣1)0
C.
D. ,g(x)=x﹣3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产甲、乙两种产品均需用A,B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产一吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为(

原料限额

A(吨)

3

2

12

B(吨)

1

2

8


A.12万元
B.16万元
C.17万元
D.18万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)为定义在R上的偶函数,当x≤﹣1时,f(x)=x+b,且f(x)的图象经过点(﹣2,0),在y=f(x)的图象中有一部分是顶点为(0,2),过点(﹣1,1)的一段抛物线.
(1)试求出f(x)的表达式;
(2)求出f(x)的值域.

查看答案和解析>>

同步练习册答案