精英家教网 > 高中数学 > 题目详情

【题目】已知二元一次不等式组 所表示的平面区域为M,若M与圆(x﹣4)2+(y﹣1)2=a(a>0)至少有两个公共点,则实数a的取值范围是( )
A.
B.
C.
D.

【答案】C
【解析】解:先画出二元一次不等式组 所表示的平面区域为M,
当圆(x﹣4)2+(y﹣1)2=a(a>0)与AB相切时只有一个交点
此时圆的半径为r= = = ∴a=
当圆(x﹣4)2+(y﹣1)2=a(a>0)过点B(5,3)与点C(2,2)时却好有两个交点
此时圆的半径为r= = ∴a=5
∴M与圆(x﹣4)2+(y﹣1)2=a(a>0)至少有两个公共点,则实数a的取值范围是
故选C.

【考点精析】本题主要考查了圆的标准方程的相关知识点,需要掌握圆的标准方程:;圆心为A(a,b),半径为r的圆的方程才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从某企业生产的某种产品中抽取100件样本,测量这些样本的一项质量指标值,由测量结果得如下频数分布表:

质量指标
值分组

[75,85)

[85,95)

[95,105)

[105,115)

[115,125]

频数

6

26

38

22

8

则样本的该项质量指标值落在[105,125]上的频率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥S﹣ABCD的底面是正方形,SA⊥底面ABCD,E是SC上一点.

(1)求证:平面EBD⊥平面SAC;
(2)设SA=4,AB=2,求点A到平面SBD的距离;
(3)设SA=4,AB=2,当OE丄SC时,求二面角E﹣BD﹣C余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若f(x)是定义在(0,+∞)上的函数,当x>1时,f(x)>0,且满足
(1)求f(1)的值;
(2)判断并证明函数的单调性;
(3)若f(2)=1,解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=log2(1+x)+log2(1﹣x).
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性,并加以说明;
(3)求f( )的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列图象中不能作为函数图象的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中a为常数.
(1)若a=1,判断函数f(x)的奇偶性;
(2)若函数 在其定义域上是奇函数,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=x5 +bx﹣8,且f(﹣2)=10,则f(2)=( )
A.﹣26
B.﹣18
C.﹣10
D.10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx,则函数g(x)=f(x)﹣f′(x)的零点所在的区间是( )
A.(0,1)
B.(1,2)
C.(2,3)
D.(3,4)

查看答案和解析>>

同步练习册答案