精英家教网 > 高中数学 > 题目详情

设f(x)=-x3+ax2+bx+c(a>0),在x=1处取得极大值,且存在斜率为数学公式的切线.
(1)求a的取值范围;
(2)若函数y=f(x)在区间[m,n]上单调递增,求|m-n}的取值范围;
(3)是否存在a的取值使得对于任意x∈(-∞,0],都有f(x)≥0.

解:(1)f′(x)=3x2+2ax+b,
∴f′(1)=-3+2a+b=0,∴b=3-2a
f′(x)=-3(x-1)[x-(-1)]=0,解得x1=1,x2=-1
∵f(x)在x=1处有极大值,
-1<1∴a<3
又f(x)-=0有实根,a≤1或a≥5,
∴0<a≤1(4分)
(2)f(x)的单调增区间为(-1,1)
则|x1-x2|=2-∈[,2)
[m、n]⊆[x1,x2]
∴|m-n|∈(0,2)(8分)
(3)(方法一)由于f(x)在(-∞,-1)上是减函数,
在(-1,1)上是增函数.
在(1,+∞)上是减函数,而x∈(-∞,0),
-1∈(-1,].
f(x)在(-∞,0]上的最小值就是f(x)在R上的极小值.
f(x)min=f(-1)=-+3a-2+c≥c,
得g(a)=)=-+3a+1,
g′(a)=-a+3=(x-)(a-),在[,1]上单调递增.
∴g(a)min=g()=-+-2>0,不存在.
依上,不存在a的取值,使f(x)≥c恒成立.(14分)
(方法二)f(x)≥c 等价于-x3+ax2+bx+c≥c
即-x3+ax2+bx≥0,x∈(-∞,0]
当x=0时,不等式恒成立;
当x∈(-∞,0)时,上式等价于x2-ax-b≥0
即x2-ax-3+2a≥0,x2-3≥(x-2)a
a≥=x-2++4
g(x)=+x-2+4在(-∞,0)上递增
所以g(x)<-2+4=2即a>2
而0<a≤1,故不存在.(14分)
分析:(1)先求出函数的导函数f'(x),然后根据极值的定义和导数的几何意义建立方程组,解之即可求出a的取值范围;
(2)先求出f′(x)=0的值,再利用列表法讨论满足f′(x)=0的点附近的导数的符号的变化情况,来确定极大值.
(2)由(1)得f(x)的单调增区间为(-1,1)从而|x1-x2|=2-∈[,2)由此得到|m-n|的取值范围;
(3)方法一:利用f(x)的单调性得出f(x)在(-∞,0]上的最小值就是f(x)在R上的极小值,由f(x)min=f(-1)=-+3a-2+c≥c,设g(a)=)=-+3a+1,利用导数研究它的单调性求出其最小值,从而得出不存在a的取值,使f(x)≥c恒成立;
方法二:f(x)≥c 等价于-x3+ax2+bx≥0,x∈(-∞,0],先对x进行分类讨论:当x=0时,不等式恒成立;当x∈(-∞,0)时,上式等价于x2-ax-b≥0分离参数得a≥=x-2++4,即可得出结论.
点评:本题主要考查了利用导数研究函数的极值、利用导数研究函数的单调性、以及利用导数求闭区间上函数的最值等有关基础知识,考查运算求解能力、推理论证能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

6、设f(x)=x3-3x2-9x+1,则不等式f′(x)<0的解集是
(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x3+bx+c是[-1,1]上的增函数,且f(-
1
2
)•f(
1
2
)<0,则方程f(x)=0在[-1,1]内(  )
A、可能有3个实数根
B、可能有2个实数根
C、有唯一的实数根
D、没有实数根

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x3-3ax2+2bx在x=1处有极小值-1,试求a、b的值,并求出f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x3-ax2-bx-c,x∈[-1,1],记y=|f(x)|的最大值为M.
(Ⅰ)当a=c=0,b=
34
时,求M的值;
(Ⅱ)当a,b,c取遍所有实数时,求M的最小值.
(以下结论可供参考:对于a,b,c,d∈R,有|a+b+c+d|≤|a|+|b|+|c|+|d|,当且仅当a,b,c,d同号时取等号)

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x3+ax2+bx+c,又k是一个常数,已知当k<0或k>4时,f(x)-k=0只有一个实根,当0<k<4时,f(x)-k=0有三个相异实根,则下列命题中错误的是(  )

查看答案和解析>>

同步练习册答案