11£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{2\sqrt{2}}{3}$£¬ÇÒÍÖÔ²ÉÏÒ»µãÓëÍÖÔ²µÄÁ½¸ö½¹µã¹¹³ÉµÄÈý½ÇÐεÄÖܳ¤Îª6+4$\sqrt{2}$£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÉèÖ±Ïßl£ºx=ky+mÓëÍÖÔ²C½»ÊÖA¡¢BÁ½µã£¬ÈôÒÔABΪֱ¾¶µÄÔ²¾­¹ýÍÖÔ²µÄÓÒ¶¥µãD£¬Çó¡÷ABDÃæ»ýµÄ×î´óÖµ£®

·ÖÎö £¨I£©¸ù¾ÝÍÖÔ²µÄ¶¨Òå·½³Ì£¬µÃ³ö$\frac{c}{a}$=$\frac{2\sqrt{2}}{3}$£¬2a$+2c=6+4\sqrt{2}$£¬Çó½â¼´¿ÉµÃ³ö·½³Ì£®
£¨II£©²»·ÁÉèABµÄ·½³ÌΪx=ky+m£¬ÓëÍÖÔ²·½³ÌÁªÁ¢£¬¸ù¾ÝÒÔABΪֱ¾¶µÄÔ²¹ýµãD£¬¿ÉµÃ $\overrightarrow{DA}$•$\overrightarrow{DB}$=0£¬´Ó¶ø¿ÉÇómµÄÖµ£¬½ø¶ø¿É±íʾÈý½ÇÐεÄÃæ»ý£¬»»Ôª£¬¼´¿ÉÇóµÃABCÃæ»ýµÄ×î´óÖµ

½â´ð ½â£º£¨I£©¡ßÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{2\sqrt{2}}{3}$£¬ÇÒÍÖÔ²ÉÏÒ»µãÓëÍÖÔ²µÄÁ½¸ö½¹µã¹¹³ÉµÄÈý½ÇÐεÄÖܳ¤Îª6+4$\sqrt{2}$£¬
¡à$\frac{c}{a}$=$\frac{2\sqrt{2}}{3}$£¬2a$+2c=6+4\sqrt{2}$£¬
¡àa=3£¬c=2$\sqrt{2}$£¬b=1£¬
¼´ÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{9}$$+\frac{{y}^{2}}{1}$=1£¬
£¨II£©²»·ÁÉèABµÄ·½³ÌΪx=ky+m£®
ÓÉ$\left\{\begin{array}{l}{x=ky+m}\\{\frac{{x}^{2}}{9}+{y}^{2}=1}\end{array}\right.$ÏûÈ¥xµÃ£¨k2+9£©y2+2kmy+m2-9=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÔòÓÐy1+y2=-$\frac{2km}{{k}^{2}+9}$£¬y1y2=$\frac{{m}^{2}-9}{{k}^{2}+9}$¢Ù
ÒòΪÒÔABΪֱ¾¶µÄÔ²¹ýµãD£¬ËùÒÔ $\overrightarrow{DA}$•$\overrightarrow{DB}$=0
ÓÉ $\overrightarrow{DA}$=£¨x1-3£¬y1£©£¬$\overrightarrow{DB}$=£¨x2-3£¬y2£©£¬µÃ£¨x1-3£©£¨x2-3£©+y1y2=0£®
½«x1=ky1+m£¬x2=ky2+m´úÈëÉÏʽ£¬
µÃ£¨k2+1£©y1y2+k£¨m-3£©£¨y1+y2£©+£¨m-3£©2=0£®
½«¢Ù´úÈëÉÏʽ£¬½âµÃm=$\frac{12}{5}$»òm=3£¨Éᣩ£®
ËùÒÔm=$\frac{12}{5}$£¨´ËʱֱÏßAB¾­¹ý¶¨µãD£¨$\frac{12}{5}$£¬0£©£¬ÓëÍÖÔ²ÓÐÁ½¸ö½»µã£©£®
ËùÒÔS¡÷ABC=$\frac{1}{2}$S¡÷ABC=$\frac{1}{2}$|AB||y1-y2|=$\frac{1}{2}¡Á$ $\frac{3}{5}$$\sqrt{£¨{y}_{1}+{y}_{2}£©^{2}-4{y}_{1}{y}_{2}}$=$\frac{9}{5}$£®
Éèt=$\frac{1}{{k}^{2}+9}$£¬0$£¼t¡Ü\frac{1}{9}$£¬ÔòS¡÷ABC=$\frac{9}{5}$£®
ËùÒÔµ±t=$\frac{25}{288}$ʱ£¬S¡÷ABCÈ¡µÃ×î´óÖµ$\frac{3}{8}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²éÈý½ÇÐÎÃæ»ýµÄ¼ÆË㣬¿¼²éÖ±ÏßÓëÍÖÔ²·½³ÌµÄÁªÁ¢£¬ÕýÈ·±íʾÈý½ÇÐεÄÃæ»ýÊǹؼü

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®y=log0.5£¨x3+2x2+x£©µÄ¶¨ÒåÓòÊÇ{x|x£¾ÇÒx¡Ù-1}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÈçͼµÄ×éºÏÌåµÄ½á¹¹ÌØÕ÷ÊÇ£¨¡¡¡¡£© 
A£®Ò»¸öÀâÖùÖнØÈ¥Ò»¸öÀâÖùB£®Ò»¸öÀâÖùÖнØÈ¥Ò»¸öÔ²Öù
C£®Ò»¸öÀâÖùÖнØÈ¥Ò»¸öÀâ×¶D£®Ò»¸öÀâÖùÖнØÈ¥Ò»¸öÀą̂

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÔÚij´ÎÊýѧ¿¼ÊÔÖУ¬¼×¡¢ÒÒ¡¢±ûÈýÃûͬѧÖÐÖ»ÓÐÒ»È˵ÃÁËÂú·Ö£¬µ±ËûÃDZ»Îʵ½Ë­µÃÁËÂú·Öʱ£¬±û˵£º¼×µÃÁËÂú·Ö£»ÒÒ˵£ºÎÒµÃÁËÂú·Ö£»¼×˵£º±û˵µÄÕæ»°£®ÊÂʵ֤Ã÷£ºÕâÈýÃûͬѧÖУ¬Ö»ÓÐÒ»ÈË˵µÄÊǼٻ°£¬ÄÇôµÃÂú·ÖµÄͬѧÊǼף®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ËÄÃæÌåABCDÖУ¬AD=x£¬ÆäÓà¸÷Àⳤ¾ùΪ2£¬¸ø³öÏÂÁÐÂÛ¶Ï
¢ÙxµÄȡֵ·¶Î§ÊÇ£¨0£¬$2\sqrt{3}$£©£»
¢ÚÒìÃæÖ±ÏßABÓëCD³É½Ç×î´óΪ90¡ã£»
¢ÛÖ±ÏßABÓëÆ½ÃæBCD³É½Ç×î´óΪ60¡ã£»
¢ÜÌå»ý×î´óʱ£¬¶þÃæ½ÇA-CD-BÆ½Ãæ½ÇµÄÕýÇÐֵΪ2£®
ÆäÖÐÕýÈ·µÄÃüÌâÓТ٢ڢۢܣ¨Ð´³öËùÓÐÕýÈ·ÃüÌâµÄÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®½«Ò»Ã¶÷»×ÓÅ×ÖÀÁ½´Î£¬ËùµÃÏòÉϵãÊý·Ö±ðΪmºÍn£¬ÔòÂú×ã2m£¾nµÄ¸ÅÂÊΪ$\frac{3}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®¶àÃæÌåABCDEÖУ¬¡÷ABCÊDZ߳¤Îª2µÄÕýÈý½ÇÐΣ¬AE£¾1£¬AE¡ÍÆ½ÃæABC£¬Æ½ÃæBCD¡ÍÆ½ÃæABC£¬BD=CD£¬ÇÒBD¡ÍCD£®
£¨¢ñ£©ÈôAE=2£¬ÇóÖ¤£ºAC¡ÎÆ½ÃæBDE£»
£¨¢ò£©Èô¶þÃæ½ÇAÒ»DEÒ»BµÄÓàÏÒֵΪ$\frac{{\sqrt{5}}}{5}$£¬ÇóAEµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=alnx+£¨x-1£©2£®
£¨1£©ÌÖÂÛº¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£»
£¨2£©Èôº¯Êýf£¨x£©ÓÐÁ½¸ö¼«Öµµãx1£¬x2£¬ÇÒx1£¼x2£¬ÊÇ·ñ´æÔÚ³£Êýk¡Ê[-1£¬0]£¬Ê¹µÃf£¨x1£©+f£¨x2£©¡Ýka2ºã³ÉÁ¢£¿Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÎªÁ˽âijÊй«ÒæÖ¾Ô¸ÕßµÄÄêÁä·Ö²¼Çé¿ö£¬´ÓÈ«ÊÐÖ¾Ô¸ÕßÖÐËæ»ú³éÈ¡ÁË80ÃûÖ¾Ô¸Õߣ¬¶ÔÆäÄêÁä½øÐÐͳ¼ÆºóµÃµ½ÆµÂÊ·Ö²¼Ö±·½Í¼ÈçÏ£¬µ«ÊÇÄêÁä×éÔÚ[25£¬30£©µÄÊý¾Ý²»É÷¶ªÊ§£®
£¨¢ñ£©ÇóÄêÁä×é[25£¬30£©¶ÔÓ¦µÄС³¤·½Ðεĸߣ¬²¢¹À¼Æ³éÈ¡µÄÖ¾Ô¸ÕßÖÐÄêÁäÔÚ[25£¬30£©µÄÈËÊý
£¨¢ò£©¹ì¼£ÊÐÖ¾Ô¸Õߵį½¾ùÄêÁ䣨ͬһ×éÖеÄÊý¾ÝÓøÃ×éÇø¼äµÄÖеãÖµ×÷´ú±í£©
£¨¢ó£©½«ÆµÂÊÊÓΪ¸ÅÂÊ£¬´Ó¸ÃÊдóÁ¿Ö¾Ô¸ÕßÖÐËæ»ú³éÈ¡3ÃûÖ¾Ô¸Õ߲μÓijÏî»î¶¯£¬¼Ç³éÈ¡µÄÖ¾Ô¸ÕßÄêÁ䲻СÓÚ35ËæµÄÈËÊýΪX£¬ÇóXµÄ·Ö²¼Áм°ÊýѧÆÚÍûEXºÍ·½³ÌDX£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸