精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sna1=
1
2
Sn=n2an-n(n-1),n=1,2,…

(1)证明:数列{
n+1
n
Sn}
是等差数列,并求Sn
(2)设bn=
Sn
n3
,求证:b1+b2+…+bn<1.
分析:(1)由Sn=n2an-n(n-1)可得,当n≥2时:Sn=n2(Sn-Sn-1)-n(n-1),两式相减可得{
n+1
n
Sn
}是等差数列,结合等差数列的通项公式可求
n+1
n
Sn
,进而可求
(2)由(1)可得bn=
Sn
n3
=
1
n(n+1)
=
1
n
-
1
n+1
,利用裂项相消法可求和,即可证明
解答:证明:(1)由Sn=n2an-n(n-1)知,
当n≥2时:Sn=n2(Sn-Sn-1)-n(n-1),…(1分)
(n2-1)Sn-n2Sn-1=n(n-1)
n+1
n
Sn-
n
n-1
Sn-1=1
,对n≥2成立.                        …(3分)
1+1
1
S1=1

∴{
n+1
n
Sn
}是首项为1,公差为1的等差数列.
n+1
n
Sn=1+(n-1)•1
…(5分)
Sn=
n2
n+1
…(6分)
(2)bn=
Sn
n3
=
1
n(n+1)
=
1
n
-
1
n+1
…(8分)
b1+b2+…+bn=1-
1
2
+
1
2
-
1
3
+…
1
n
-
1
n+1

=1-
1
n+1
<1
…(12分)
点评:本题主要考查了数列的和与项相互转化的递推公式在数列的通项公式的求解中的应用,裂项求和方法的应用是证明(2)的关键
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案