分析 (1)由条件利用同角三角函数的基本关系,求得要求式子的值.
(2)利用同角三角函数的基本关系、诱导公式,求得要求式子的值.
解答 解:(1)已知$sinα-cosα=\frac{1}{5}$(α是第三象限角),
平方可得1-2sinα•cosα=$\frac{1}{25}$,∴sinα•cosα=$\frac{12}{25}$.
∵sinα+cosα<0,(sinα+cosα)2=1+2sinαcosα=1+$\frac{24}{25}$,∴sinα•cosα=-$\frac{7}{5}$.
(2)∵$cos({{{40}^o}+x})=\frac{1}{4}$,且-180°<x<-90°,
cos(140°-x)+cos2(50°-x)=-cos(40°+x)+sin2(40°+x)=-$\frac{1}{4}$+1-cos2(40°+x)
=$\frac{3}{4}$-$\frac{1}{16}$=$\frac{11}{16}$.
点评 本题主要考查同角三角函数的基本关系、诱导公式的应用,以及三角函数在各个象限中的符号,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (x+1)2+(y-2)2=5 | B. | (x-1)2+(y+2)2=5 | C. | (x±1)2+(y?2)2=5 | D. | (x±1)2+(y±2)2=5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -1 | C. | 1或-1 | D. | 以上答案都不对 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| x | 0 | 1 | 3 | 4 |
| y | 2.2 | 4.3 | 4.8 | 6.7 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com