精英家教网 > 高中数学 > 题目详情

探究函数f(x)=x+,x∈(0,+∞)的最小值,并确定取得最小值时x的值.列表如下:

x

0.5
1
1.5
1.7
1.9
2
2.1
2.2
2.3
3
4
5
7

y

8.5
5
4.17
4.05
4.005
4
4.005
4.02
4.04
4.3
5
5.8
7.57

请观察表中y值随x值变化的特点,完成以下的问题.
函数f(x)=x+(x>0)在区间(0,2)上递减;
(1)函数f(x)=x+(x>0)在区间                  上递增.
当x=                 时,y最小=                         .
(2)证明:函数f(x)=x+在区间(0,2)上递减.
(3)思考:函数f(x)=x+(x<0)有最值吗?如果有,那么它是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)

(1)(2,+∞);2;4(2)证明如下(3)当x=-2时,有最大值-4

解析试题分析:(1)(2,+∞);2;4 
(2)任取∈(0, 2)且于是,f()-f(
=(x)-(x2)  =
(1)∵ x, x∈(0, 2) 且 x<x
∴ x-x<0;xx-4<0; xx>0
∴(1)式>0 即f(x)-f(x)>0,f(x)>f(x
∴f(x)在区间(0, 2)递减.  10分
(3)当x=-2时,有最大值-4提示:f(x)在(-∞,0)∪(0, ∞)
为奇函数.图象关于原点对称.
考点:函数的单调性;函数的最值
点评:证明函数在区间上为增(减)函数的方法是:令,若
),则函数为增(减)函数。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
若函数上是增函数,在是减函数,求的值;
讨论函数的单调递减区间;
如果存在,使函数,在处取得最小值,试求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是奇函数。
(1)求实数a的值;
(2)判断函数在R上的单调性并用定义法证明;
(3)若函数的图像经过点,这对任意不等式恒成立,求实数m的范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中为常数.
(Ⅰ)当时,判断函数在定义域上的单调性;
(Ⅱ)当时,求的极值点并判断是极大值还是极小值;
(Ⅲ)求证对任意不小于3的正整数,不等式都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,请用定义证明上为减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,函数的图像在点处的切线平行于轴.
(1)求的值;
(2)求函数的极小值;
(3)设斜率为的直线与函数的图象交于两点,(
证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且
(1)求
(2)判断的奇偶性;
(3)判断上的单调性,并证明。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,证明:对
(2)若,且存在单调递减区间,求的取值范围;
(3)数列,若存在常数,都有,则称数列有上界。已知,试判断数列是否有上界.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 
(I)当时,求在[1,]上的取值范围。
(II)若在[1,]上为增函数,求a的取值范围。

查看答案和解析>>

同步练习册答案